La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Mecánica: Dinámica de Rotación Física :Mecánica LPSA Viña del Mar.

Presentaciones similares


Presentación del tema: "Mecánica: Dinámica de Rotación Física :Mecánica LPSA Viña del Mar."— Transcripción de la presentación:

1 Mecánica: Dinámica de Rotación Física :Mecánica LPSA Viña del Mar

2 Conceptos Previos sobre estática y dinámica lineal

3 Equilibrio Traslacional Suma de las fuerzas vale cero El objeto viaja a V = cte o se encuentra en reposo

4 Equilibrio Rotacional Suma de los torque vale cero El objeto se mueve girando sobre algún eje con vel. ang. = cte, o no se encuentra girando

5 Tipos de Equilibrio E. Estable E. Inestable E. Marginal

6 Si el cuerpo no está en equilibrio Suma de las fuerzas vale m*a M es la masa del objeto, y a es la aceleración resultante. Suma de los torques vale I*α I es el momento de Inercia del objeto, y α es la aceleración angular resultante. Además T = r x F

7 Momento de Inercia de un cuerpo Es una magnitud que da cuenta como es la distribución de masas de un cuerpo o un sistema de partículas alrededor de uno de sus puntos. Es análogo a la masa de un cuerpo. Representa la inercia de un objeto a rotar.

8 Para un sistema de partículas se define como la suma de los productos entre las masas de las partículas que componen un sistema, y el cuadrado de la distancia r de cada partícula a al eje de giro escogido. Matemáticamente se expresa como:

9 Note que si: I = m i * r i ² Entonces si se tiene sólo una partícula: I = m*r² El momento de inercia depende de la distancia entre el objeto y el eje de giro. m

10 Ejercicio ejemplo: Se tiene tres partículas de masas iguales m= 0,5 (Kg), cada una tres metros de la otra respecto del origen de un plano cartesiano (ver figura). a) Calcular el momento de inercia de la esfera 1 respecto del eje Y. b) Calcular el momento de inercia del sistema respecto del eje Y.

11 Momento de Inercia para un sólido rígido. Se determina sumando los momentos de inercia de todas las partículas que forman el cuerpo. Algunos valores para cuerpos rígidos típicos.

12 Tabla Momentos de Inercia Cuerpos Rígidos Típicos

13 Ejercicio Calcule el momento de inercia para: a) Una barra de largo 50 cm y masa 5 Kg que gira sobre un eje que: i) pasa por su centro ii) pasa pos su extremo b) Un cilindro de radio 10 cm y alto 20 cm, cuya masa es de 800 grs. si gira sobre n eje central: i) // a su altura ii) // a su diámetro c) Una esfera que gira sobre su diámetro, de masa 2,5 Kg y diámetro 25 cm. d) Un cascaron esférico de masa 1000 grs y radio 50 cm que gira sobre su diámetro.

14 Momento angular El momento angular (cantidad vectorial) es conocido como la Cantidad de movimiento que lleva un cuerpo cuando está girando. Análogo a cantidad de movimiento lineal. Matemáticamente es: L = I * ω donde I es el momento de inercia y ω es la vel. ang.

15 Momento angular y Torque si diferenciamos esta última ecuación: ΔL = I * Δω Y luego dividimos por Δt, tenemos que: ΔL/ Δt = I * α Entonces llegamos a: Torque = ΔL / Δt

16 Ejercicio Calcule el momento angular de los objetos del ejercicio anterior si cada uno lleva vel. ang = 4 rd/seg

17 Momento Angular y Lineal Como T = r x F y: T = ΔL / Δt ΔL = r x F * Δt pero F = m * Δv / Δt ΔL = r x m * Δv Ahora, m * Δv = Δp entonces: ΔL = r x Δp Sin diferencias: L = r x p es la relación entre las cantidades de movimiento lineal y angular para un cuerpo que gira respecto de un eje.

18 Ejercicio Se tiene una esfera de masa 3,5 Kg que gira en torno a un eje a 50 cm. Cada vuelta demora 7 seg. a)Calcule la cantidad de movimiento lineal de la esfera b)Calcule el momento de inercia de la esfera c)Calcule la cantidad de movimiento angular de la esfera

19 Cambio en el Momento de Inercia Como vimos antes, I = m i *r i ² entonces depende de la distancia a la cual gira el cuerpo. Si trabajamos con un sólido rígido también dependerá de la distancia a la cual gira el sólido. Podemos cambiar el momento de inercia, o calcular el momento de inercia si cambia el eje de giro.

20 Teorema de los Ejes Paralelos (o teorema de Steiner) Dice que si un cuerpo de masa M que posee momento de inercia I cm respecto de su centro de masa y gira en torno a un eje a una distancia d del centro de masa del sólido rígido, entonces su nuevo momento de Inercia I´ calculado respecto de el nuevo eje de giro es: I´ = I cm + M*d²

21 Ejemplo Se sabe que para una barra de masa M y largo L que gira en torno a aun eje que pasa por su centro de masa y paralelo al diámetro, su I = ML² 12 Si consideramos que la barra ahora gira en torno a uno de sus extremos, la distancia entre el nuevo eje de giro y su centro de masa es d=L/2

22 Ejemplo Entonces I´ = I cm + M*d² como d=L/2 y I cm = ML² 12 I´ = ML² + ML² 12 4 Sacando factor común: I´ = ML² + 3ML² => I´ = 4ML² => I´ = ML² Que es el valor dado por tabla

23 Ejercicio Calcule el valor del momento de inercia de una superficie plana de ancho w y largo l si gira en torno a un eje paralelo al lado w, y cuya masa es M. Calcule el momento de inercia de un cilindro de radio R que gira en torno a un eje paralelo a su altura h, y cuya masa es M. Calcule el momento de inercia de una esfera de radio R y masa M que gira en torno a un eje tangente a su superficie. Calcule el momento de inercia de un cascarón esférico de radio R y masa M que gira en torno a un eje tangente a su superficie.

24 El péndulo simple También llamado péndulo matemático. Es una situación ideal, en la que un cuerpo de forma esférica, y cuya masa es m, pende de un hilo ideal (de masa despreciable – m = 0 – e inextensible) cuyo largo es L, en las cercanías de la superficie terrestre (g = acel. grav.)

25 El péndulo simple consideremos que giramos el péndulo un ángulo α menor a 10°, y lo soltamos provocando un movimiento de rotación. El periodo del movimiento T se define como el tiempo que demora un cuerpo en completar una oscilación, y esta se da cuando el objeto se encuentra en la misma posición y viajando con la misma velocidad. α

26 El péndulo simple Si α es pequeño, se cumple que: Note que el periodo de oscilación es independiente de la masa que cuelga. α

27 Experimento: Medición de g Con el péndulo simple, es posible encontrar cuanto vale la aceleración de gravedad en las cercanías de la superficie terrestre en esta zona (Viña del Mar). De la ecuación anterior, podemos despejar g: Para determinar el valor de g es necesario montar un péndulo simple y tomar medidas del largo y del periodo de oscilación, luego reemplazar en la ecuación de arriba y encontrar g.

28 Experimento: Medición de g Procedimiento: 1.Para un ángulo fijo, y largos L distintos del hilo, tome 10 mediciones de el tiempo t que demora en completar n oscilaciones. t/n es el periodo T de cada oscilación. 2.Construya una tabla t, n, T, L 3.Calcule el valor de g para cada toma de datos, según la expresión encontrada. 4.Encuentre el valor promedio de g que obtuvo. L(m)t (s)n° oscT=t/n°

29 Ejemplo. L(m)t(s)n° osc T = t/n°osc (s)g =4*π²*L/T²(m/s²) 0,51736,51251,46049, ,45234,18251,36729, ,3831,53251,26129, ,28231,15301, , ,19731,74350, , ,54237,23251,48929, ,58138,47251,53889, ,60731,33201,56659, ,43633,32251,33289, ,36630,91251,23649, =9, (m/s²)

30 Cálculo de Error Porcentual Si para una variable dada se experimenta tomando datos y encontrando experimentalmente un valor promedio, existe un porcentaje de error, típico de cualquier medición, que puede obtenerse a partir del valor teórico estándar. Según la ecuación:

31 Ejemplo. Para el valor de g obtenido es 9,657 (m/s²) El valor teórico de g es 9,81 (m/s²) el porcentaje de error es: Un error del orden del 3% se considera aceptable.

32 Próxima Semana Materiales: Entregar informe.

33 El Péndulo Físico


Descargar ppt "Mecánica: Dinámica de Rotación Física :Mecánica LPSA Viña del Mar."

Presentaciones similares


Anuncios Google