La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

ANÁLISIS DE FENÓMENOS ELÉCTRICOS, ELECTROMAGNÉTICOS Y ÓPTICOS.

Presentaciones similares


Presentación del tema: "ANÁLISIS DE FENÓMENOS ELÉCTRICOS, ELECTROMAGNÉTICOS Y ÓPTICOS."— Transcripción de la presentación:

1 ANÁLISIS DE FENÓMENOS ELÉCTRICOS, ELECTROMAGNÉTICOS Y ÓPTICOS

2 PRIMERA UNIDAD

3

4 Hans Christian Oersted Fue un físico y químico danés, descubrió el electromagnetismo en el año de su experimento consistió en convertir la electricidad en magnetismo, haciendo circular una corriente eléctrica atreves de un conductor, y observo que se producía un campo magnético alrededor del mismo capaz de lograr desviar una aguja de una brújula en el momento de hacer circular la corriente eléctrica.

5

6 Los cuerpos se electrizan al perder o ganar electrones. Si un cuerpo posee carga positiva, esto no significa exceso de protones, pues no tiene facilidad de movimiento como los electrones. Por lo tanto, debemos entender que la carga de un cuerpo es positiva si pierde electrones y negativa cuando los gana. Los cuerpos se electrizan por: frotamiento, contacto e inducción.

7 Ley de Coulomb: es la ley fundamental de la electrostática que determina la fuerza con la que se atraen o se repelen dos cargas eléctricas. Las primeras medidas cuantitativas relacionadas con las atracciones y repulsiones eléctricas se deben al físico francés Charles Agustín Coulomb.

8 Si las cargas eléctricas se mantienen constantes, la fuerza de atracción de repulsión entre ellas es, en valor absoluto, inversamente proporcional al cuadrado de la distancia que las separa. Si ambas cargas tienen el mismo signo, es decir, si ambas son positivas o ambas negativas, la fuerza es repulsiva. Si las dos cargas tienen signos opuestos la fuerza es atractiva.

9 Coulomb: es la cantidad de carga que pasa por una sección transversal dada en un alambre en un segundo, si circula por el alambre una corriente constante de un ampere (1 ampere) Ley de Coulomb: La fuerza que se ejerce entre dos cuerpos cargados de electricidad separados por aire, es directamente proporcional al producto de las cargas e inversamente proporcional al cuadrado de la distancia existente entre ellas.

10

11

12

13 Determinación de potencial Eléctrico

14

15

16

17

18 Para representar al campo eléctrico se utilizan las llamadas líneas de campo. Un conjunto de líneas forman un espectro de líneas de campo o plenamente espectro del campo. Cuyas características son: 1)Las líneas deberán partir de cargas positivas y terminar en cargas negativas. 2)El numero de líneas es proporcional a la magnitud de la (S) carga (S). 3)Dos líneas de campo nunca se pueden cruzar. 4)El vector campo eléctrico es tangente a la línea de campo eléctrico en cada punto. 5)El numero de líneas por unidad de área que pasan por una superficie perpendicular a las líneas de campo es proporcional a la magnitud de campo eléctrico en esa región. La siguiente figura representa un campo eléctrico en las vecindades de una carga positiva.

19

20

21 Cuando dos o mas cargas están presentes, el campo eléctrico resultante en el punto p es la suma vectorial de lo s campos eléctricos producidos por cada carga sobre el punto.

22 Analíticamente

23

24 La energía Potencial Eléctrica es la energía acumulada en un cuerpo, a su vez éste es capaz de realizar un trabajo. Una carga ejercerá una fuerza sobre cualquier otra carga y la energía potencial surge del conjunto de cargas. Esto es: si en cualquier punto del espacio una carga se encuentra una carga positiva Q, cualquier otra carga positiva q que se acerque a Q experimentará una fuerza de repulsión y por lo tanto tendrá energía potencial.

25

26

27 y esto, limitando el análisis a una sola componente espacial, x, se reduce a: Expresión que supone que la magnitud de la componente del campo eléctrico en la dirección adoptada, x, equivale al ritmo de variación del potencial eléctrico con la distancia. El signo menos indica que la orientación del campo es la que coincide con el sentido hacia el que el potencial decrece.

28 El potencial eléctrico o potencial electrostático en un punto, es el trabajo que debe realizar un campo electrostático para mover una carga positiva q desde dicho punto hasta el punto de referencia, dividido por unidad de carga de prueba.

29

30

31 En la figura siguiente se visualiza esta relación en el caso del campo creado por una carga puntual de signo positivo. En este caso, las líneas de fuerza del campo eléctrico forman un haz que emerge de la carga en todas las direcciones y se dirige hacia el exterior. Junto con ellas, se han dibujado también tres superficies esféricas (1, 2 y 3) con centro en la carga. Son superficies equipotenciales, ya que, como el valor del potencial eléctrico depende únicamente de la carga y de la distancia, en todos los puntos que pertenecen a cada una de estas superficies, el potencial tiene un valor constante. El dibujo completo muestra que, tal como predice la relación escrita un poco más arriba, las líneas del campo eléctrico atraviesan a dichas superficies equipotenciales perpendicularmente y se dirigen desde donde el potencial es mayor (superficie 1) hacia donde es menor (superficie 3).

32 Este tipo de representación, que dibuja las líneas de fuerza del campo y superficies equipotenciales, es muy instructivo, porque, después de calcular el potencial en cada punto circundante a cualquier distribución de carga, ayuda a prever la dirección y el sentido de las líneas de fuerza del campo, y viceversa. Como ejemplo, se muestran a la derecha las líneas del campo eléctrico (en color rojo) y las superficies equipotenciales (en azul) de un dipolo eléctrico, formado por dos cargas puntuales de signos opuestos (la positiva representada de color rojo y la negativa de color verde).


Descargar ppt "ANÁLISIS DE FENÓMENOS ELÉCTRICOS, ELECTROMAGNÉTICOS Y ÓPTICOS."

Presentaciones similares


Anuncios Google