La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Econ. NATHALS SOLIS, LILIAN Msc. TEORIA DE LOS JUEGOS.

Presentaciones similares


Presentación del tema: "Econ. NATHALS SOLIS, LILIAN Msc. TEORIA DE LOS JUEGOS."— Transcripción de la presentación:

1 Econ. NATHALS SOLIS, LILIAN Msc. TEORIA DE LOS JUEGOS

2 Economía Positiva Economía Normativa Juicios de Valor Economía Descriptiva Teoría Económica Microeconomía Macroeconomía Teoría De Los Juegos …..

3 Demanda: Q = a - bP a/b Oferta: Q = c + dP -c/d P* Q* E D = -bP*/Q* E S = dP*/Q* Comprensión y Predicción de los Efectos de los cambios de la Situación del Mercado Cantidad Precio

4 q0q0 Beneficios perdidos en el caso en el que q 1 < q * Beneficios perdidos en el caso en el que q 2 > q * q1q1 q2q2 Una Empresa Competitiva que obtiene unos Beneficios Positivos Precio (dólares por unidad) CM CVMe CTMe IMe = IM = P Producción q*q* En q * : IM = CM y P > CTMe ABCDo x q * CMe) -(P D A B C q 1 : IM > CM y q 2 : CM > IM y q 0 : CM = IM, pero CM cae.

5 Observaciones: – CMe = 15$, Q = 10, CT = CMe x Q = 150. – Beneficios = IT = CT = 300$ - 150$ = 150$ o – Beneficios = (P - CMe) x Q = (30$ - 15$)(10) = 150$. Cantidad Q CM IMe IM CMe Beneficios Monopolio :Ejemplo de Maximización de los Beneficios

6 Una Empresa Monopolísticamente Competitiva a Corto y a Largo plazo Cantidad $/Q Cantidad $/Q CM CMe CM CMe D CP IM CP D LP IM LP Q CP P CP Q LP P LP Corto PlazoLargo plazo

7 Pérdida Irrecuperable De Eficiencia CMCMe Comparación del Equilibrio Monopolísticamente Competitivo y el Perfectamente Competitivo $/Q Cantidad $/Q D = IM QCQC PCPC CMCMe D LP IM LP Q CM P CM Cantidad Competencia PerfectaCompetencia Monopolística

8 CM 1 50 IM 1 (75) D 1 (75) 12,5 Si la Empresa 1 piensa que la Empresa 2 producirá 75 unidades, su curva de demanda se desplaza a la izquierda en esa cuantía. Oligopolio: La Decisión de Producción de la Empresa Q1Q1 P1P1 ¿Cuál será la producción de la Empresa 1 si la empresa 2 produce 100 unidades? D 1 (0) IM 1 (0) Si la Empresa 1 piensa que la Empresa 2 no producirá nada, su curva de demanda, D 1 (0), es la curva de demanda del mercado. D 1 (50)IM 1 (50) 25 Si la Empresa 1 piensa que la Empresa 2 producirá 50 unidades, su curva de demanda se desplaza a la izquierda en esa cuantía.

9 Curva de reacción de la Empresa 2 Q*2(Q 2 ) La curva de reacción de la empresa 2 muestra su nivel de producción en función de cuánto piense que producirá la 1. Las Curvas de Reacción y el Equilibrio de Cournot Q2Q2 Q1Q Curva de reacción de la Empresa 1 Q* 1 (Q 2 ) x x x x La curva de reacción de la Empresa 1 muestra cuánto produce en función de cuánto piense que producirá la 2. Las cruces corresponden al modelo anterior. En el equilibrio de Cournot, cada empresa supone correctamente cuánto producirá su competidora, y por lo tanto, maximiza sus propios beneficios. Equilibrio de Cournot

10 1.1. Marco Teórico: Teoría de los Juegos ABAB B1B2B3C A A28622 A D8 11 Maximin: max {C i } para A (matriz de ganancia) donde C i =min a ij Asegura que para un comportamiento del contrincante que menos convenga se obtenga la ganancia máxima Minimax: min {D j } para B donde D j =max a ij

11 Teoría de los Juegos(1): Análisis de las decisiones individuales, racionales bajo condiciones de información incompleta. a)Situaciones de conflicto puro, donde las ganancias de un jugador son las perdidas del otro. b) Situaciones de conflicto mixto y cooperación, donde los jugadores pueden cooperar para incrementar sus ingresos aunque surja el conflicto en la distribución de los mismos. (1)Ahijado & Otros. Diccionario de la Teoría Económica. (España, 1985).

12 TEORIA DE LOS JUEGOS Desarrollada Von Neumann Oskar Morgenstern (1943) John Forbes Nash (1949) John Nash Reinhard Selten Jonh C. Harsanyi Premio Nobel (1994) Creadores Emile Borel John Von Neumann (1921) Augustin Cournot (1838) Joseph Bertrand (1888) Albert W. Tucker Dilema del Prisionero (1950 ) Robert J. Aumann Thomas C. Schelling PREMIO NOBEL (2005) ESTADO POLITICA ECONOMICA ESTRATEGIAS ECONOMICAS MERCADO NACIONAL INTERNACIONAL PARTIDOS POLITICOS FAMILIAS EMPRESAS MILITARES

13 Historia: Teoría de los Juegos John von Neumann demuestra el teorema minimax Theory of Games and Economic Behavior. John von Neumann y Oskar Morgenstern Nash publica su primer artículo sobre el equilibrio Aparece el International Journal of Game Theory Aparece el Games and Economic Behavior Nobel de Economía para Harsanyi, Nash y Selten La ISDG crea el International Game Theory Review First World Conference on Game Theory (IGTS).

14 La teoría de juegos se desarrolla por John Von Neumann ( ) y por Oskar Morgenstern ( ) en 1943, con la publicación de su libro The Theory of Games and Economic Behavior, (La Teoría de Juegos y la Conducta Económica ). Historia John Von Newman ( ) Oskar Morgenstern ( )

15 John Von Newman ( ) Estudio, los juegos de suma cero o estrictamente competitivos. Estrategia garantizar lo mejor dentro de lo peor. Juego de Suma Cero en el Comercio Internacional: Los Esparragos Peruanos peruanos/

16 Teoría de los Juegos: Una Teoría Matemática del Conflicto Humano Que todos ganen no significa ausencia de conflicto unos ganan mas y otros menos la lucha es por la mejor porción. Juegos No Cooperativos Equilibrio Nash-cournot. (1928-….)

17 John HarsanyiJohn NashReinhard Selten Los Tres Galardonados con el Premio Nobel de Economía en 1994

18 Aumann, Robert J. (1930-) Alemán Schelling, Thomas C. (1921-) Estadounidense Premio Nóbel 2005 Por haber ampliado nuestra comprensión del conflicto y la cooperación mediante el análisis de la Teoría de Juegos".

19 Juego: Situación en la que los jugadores (participantes) toman decisiones estratégicas que tienen en cuenta las acciones y respuestas de los demás.

20 Importancia En el mundo real, tanto en las relaciones Económicas Políticas Sociales Militares Internacionales Gobierno Empresas Familias Sus resultados dependen de las estrategias

21 Evidencia Empírica

22 Perú : Índice de Concentración de Mercado La metodología del IHH (usado por la autoridad reguladora de EEUU para aprobar o no las fusiones y adquisiciones) dice que si este es menor a 0.18 los mercados están poco o relativamente concentrados. Por encima de 0.18, tenemos mercados altamente concentrados, es decir, controlados en más del 60 a 70% por 1, 2 o 3 empresas. Esto se llama también mercados oligopólicos.

23 Descripción de un Juego Se necesita: a) Los Jugadores ¿Cuáles son las partes involucradas?. b) Las Reglas ¿Qué pueden hacer los jugadores? ¿Qué es lo que conocen al momento de hacer sus movimientos? ¿Cuál es el orden de las jugadas? c) Los resultados, para cada combinación posible de acciones por parte de los jugadores, ¿Cuál es el resultado del juego?

24 Descripción de un Juego d) Las Estrategias e) Los pagos. ¿Cuál es la función de utilidad de cada jugador con respecto a los resultados del juego?

25 Clasificación: a)Juegos No Cooperativos: No hay acuerdo previos. b)Juegos Cooperativos: Hay acuerdos previos. c)Juegos de Información Perfecta: Los jugadores conocen lo sucedido antes de tomar su decisión. d)Juegos con Información Imperfecta: Los jugadores no conocen lo sucedido antes de tomar su decisión. e)Juegos Dinámicos o Secuencial: Los jugadores pueden observar y responder a las acciones de sus contrincantes. Stackelberg. f)Juegos Estáticos o Simultáneos : Los jugadores juegan simultáneamente. Cournot. g)Juegos Finitos: Un periodo. h)Juegos Infinitos: n periodos

26 Clasificación: En términos generales hay cuatro tipos de juegos en esta teoría: 1.Juegos estáticos con información completa 2.Juegos estáticos con información incompleta 3.Juegos dinámicos con información completa 4.Juegos dinámicos con información completa

27 La Forma Extensiva, o Árbol: a)Orden en que intervienen. b)Las alternativas disponibles para cada jugador cuando le toca su turno de jugar. c)La información que tiene cada jugador en cada uno de estos turnos. d)Las ganancias para cada jugador como una función de las jugadas seleccionadas. e)Las distribuciones de probabilidad de las jugadas según los estados de la naturaleza.

28 Representación de un Juego: a)FORMA EXTENSIVA o Secuencial: Arbol b)FORMA NORMAL o Estratégica: Matriz de PAGOS

29 1.2 Soluciones a la Teoría de los Juegos Distintos Métodos para resolución de Juegos Submatrices Laplace Minimáx Hurwicks (Optimismo) Savage Gráfico Iteración (Braun Robinson)

30 A continuación se encuentra la bi-matriz del famoso dilema del prisionero. Equilibrio de Nash en Estrategias Puras CNC C-3,-30,-5 NC-5,0-1,-1 ¿Cuántos individuos hay en este juego?. ¿Cuáles son los conjuntos de estrategias para cada jugador?, es decir, (S 1 = ¿?; S 2 = ¿?). ¿Cuáles son las funciones de pago para cada jugador?, es decir, (U 1 (s)=¿?; U 2 (s)= ¿?). ¿Cómo resolvemos este juego?

31 Para resolver un juego como el anterior, la solución o concepto más utilizado es el equilibrio de Nash. En palabras, el equilibrio de Nash es una combinación de estrategias, tal que ninguno de los competidores tiene incentivos para cambiar su estrategia. Equilibrio de Nash en Estrategias Puras

32 De manera más formal, un equilibrio de Nash es una combinación de estrategias, tal que la estrategia utilizada por cada jugador es su mejor respuesta a las estrategias utilizadas por el resto de los jugadores. La estrategia s i es la mejor respuesta del individuo i a la combinación de estrategias de sus competidores s -i si Ui(s i,s -i ) Ui(s i ´,s -i ) para todo s i ´ Є S i. Equilibrio de Nash en Estrategias Puras

33 CNC C-3,-30,-5 NC-5,0-1,-1 Para el caso del dilema del prisionero, las mejores respuestas para el jugador 1 y 2 son las siguientes: Para el jugador 1: Si el individuo 2 juega C, la mejor respuesta del jugador 1 es C. Si el individuo 2 juega NC, la mejor respuesta del jugador 1 es C. Para el jugador 2: Si el individuo 1 juega C, la mejor respuesta del jugador 2 es C. Si el individuo 1 juega NC, la mejor respuesta del jugador 2 es C. J1 J2

34 En el juego anterior, hay un único( en otros casos puede haber más de un equilibrio) equilibrio de Nash (C;C). De este resultado, hay que notar varios aspectos: 1.El pago asociado a esta combinación de estrategias maximiza los beneficios de cada individuo condicional a las acciones del otro jugador. 2.El pago asociado a esta combinación de estrategias no es el más eficiente. Por ejemplo, la combinación (NC;NC) trae consigo un pago más alto para cada uno de los jugadores (-1). 3.El conjunto de estrategias de los jugadores en este juego es discreto. Para el caso de conjuntos continuos, usamos el método de optimización para obtener las mejores respuestas. Equilibrio de Nash en Estrategias Puras

35 Conclusiones: 1.La teoría de juegos es un esquema de análisis de situaciones estratégicas. 2.En concordancia con la teoría microeconómica neoclásica, en teoría de juegos los individuos son maximizadores de utilidad y las empresas del beneficio. 3.En juegos estáticos con información completa, la solución más utilizada es el equilibrio de Nash, donde los individuos maximizan sus beneficios condicional a las acciones de sus competidores.

36 1.3 Aplicaciones: Economía y Juegos COURNOTRepartir el mercado BERTRANDCompetencia STACKELBERGLiderazgo FINANZASApuestas de alto riesgo

37 Representación de un Juego a)La Forma Extensiva de un juego Simultáneo, Estático. Las decisiones se toman simultáneamente. 1 (2,-1) (2,0) (3,1) (1,0) A B D I D I 2 Modelo de Cournot Modelo de Bertrand

38 Representación de un Juego b) La Forma Extensiva o Secuencial, juego dinámico: El jugador 2 observa la decisión del jugador 1 antes de decidir su propia estrategia; por esta razón decimos que se trata de un juego secuencial (2,-1) (2,0) (3,1) (1,0) A B D I D I Modelo de Stackelberg

39 Representación de un Juego a)La Forma Normal o Estratégica Juego Secuencial. Fuente: Jorge Fernández Baca

40 Representación de un Juego a)La Forma Normal o Estratégica Juego Secuencial. Fuente: Jorge Fernandez Baca

41 Teoría del Oligopolio: Modelo de Cournot Cournot formuló en el año 1838 un modelo estático donde las empresas eligen simultáneamente sus volúmenes de producción P = ? Q = ? Cournot Niveles de Producción q1+q2=Q Cada empresa elige el nivel de producción que más le conviene, considerando el nivel de producción que sus competidores elegirán.

42 Teoría del Oligopolio: Modelo de Cournot Supongamos que existen 2 empresas en el mercado. La Función de demanda de mercado es P = 30 - Q Ambas empresas enfrentan un costo marginal constante = 0. No existen costos fijos.

43

44

45

46

47 Empresa (112.50,112.50)(93.75,125)(56.25,112.50) Empresa 110(125,93.75)(100,100)(50,75) 15(112.50,56.25)(75,50)(0,0) Fuente: Pindyck. Pág. 494 Cournot: q1 =q2=10 Coludir: q1=q2=7.5 Stackelberg: q1=15; q2=7.5

48 Algunos Textos: R. Aumann and S. Hart (1992). "Handbook of Game Theory (Vol. 1)". North-Holland. R. Aumann and S. Hart (1994). "Handbook of Game Theory (Vol. 2)". North-Holland. R. Aumann and S. Hart (2002). "Handbook of Game Theory (Vol. 3)". North-Holland. R. Gibbons (1992). "Un Primer Curso de Teoría de Juegos". Antoni Bosch Editor. R. Myerson (1991). "Game Theory. Analysis of Conflict". Harvard University Press. M. Osborne and A. Rubinstein (1994). A Course in Game Theory. The MIT Press. G. Owen (1995). "Game Theory". Academic Press.

49 Pag web. od/resource/view.php?id=8

50 MUCHAS GRACIAS Econ. LILIAN NATHALS SOLIS Msc.


Descargar ppt "Econ. NATHALS SOLIS, LILIAN Msc. TEORIA DE LOS JUEGOS."

Presentaciones similares


Anuncios Google