La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Introducción La electricidad es una fuerza fundamental de la naturaleza, análoga a la de la gravedad, cuya diferencia radica en que la fuerza de la gravedad.

Presentaciones similares


Presentación del tema: "Introducción La electricidad es una fuerza fundamental de la naturaleza, análoga a la de la gravedad, cuya diferencia radica en que la fuerza de la gravedad."— Transcripción de la presentación:

1

2 Introducción La electricidad es una fuerza fundamental de la naturaleza, análoga a la de la gravedad, cuya diferencia radica en que la fuerza de la gravedad entre dos objetos depende de su masa mientras que la fuerza eléctrica depende de su carga La electricidad es una fuerza fundamental de la naturaleza, análoga a la de la gravedad, cuya diferencia radica en que la fuerza de la gravedad entre dos objetos depende de su masa mientras que la fuerza eléctrica depende de su carga

3 La Carga Eléctrica es una Propiedad Básica de las Partículas Elementales: Electrones Electrones Protones Protones Neutrones Neutrones Componen toda la materia ordinaria Lo que mantiene al átomo unido es la fuerza eléctrica entre sus protones y electrones

4 ¿En qué se Fundamenta la Bioelectricidad ? Leyes y principios de la física eléctrica Leyes y principios de la física eléctrica A partir de los cuales se estudian los fenómenos bioeléctricos que ocurren en el organismo: A partir de los cuales se estudian los fenómenos bioeléctricos que ocurren en el organismo: Transporte de iones a través de la membrana Transporte de iones a través de la membrana Transferencia de los impulsos nerviosos Transferencia de los impulsos nerviosos Contracción de las fibras musculares, etc. Contracción de las fibras musculares, etc. Y para la comprensión de dispositivos que proporcionan diversos registros eléctricos: Y para la comprensión de dispositivos que proporcionan diversos registros eléctricos: Electrocardiograma Electrocardiograma Electroencefalograma Electroencefalograma Electromiograma, etc. Electromiograma, etc.

5 Carga Eléctrica: Ley de Coulomb La carga como la masa es una propiedad fundamental de la materia, y son de dos tipos: La carga como la masa es una propiedad fundamental de la materia, y son de dos tipos: Carga positiva, asociadas al protón Carga positiva, asociadas al protón Carga negativa, asociadas al electrón Carga negativa, asociadas al electrón Por tanto las fuerzas eléctricas pueden ser de atracción o de repulsión: regidas por la ley de las cargas (cargas iguales repelen y contrarias se atraen) Por tanto las fuerzas eléctricas pueden ser de atracción o de repulsión: regidas por la ley de las cargas (cargas iguales repelen y contrarias se atraen)

6 Principios Físicos Carga eléctrica Carga eléctrica Electrón = Protón Electrón = Protón Equivale a 1,6 x Equivale a 1,6 x Unidad de carga: Coulomb (C) Unidad de carga: Coulomb (C) La fuerza eléctrica entre dos objetos con cargas q 1 y q 2 separadas por una distancia r es: La fuerza eléctrica entre dos objetos con cargas q 1 y q 2 separadas por una distancia r es: Donde k es la constante eléctrica universal : Donde k es la constante eléctrica universal :

7 Fuerza Eléctrica Depende del producto de las cargas de los objetos como la fuerza de la gravedad depende del producto de sus masas Depende del producto de las cargas de los objetos como la fuerza de la gravedad depende del producto de sus masas Ambas fuerzas son inversamente proporcionales al cuadrado de la distancia que separa los objetos Ambas fuerzas son inversamente proporcionales al cuadrado de la distancia que separa los objetos Donde Donde Otra diferencia entre estas fuerzas es que la de gravedad siempre es atractiva y la eléctrica puede ser repulsiva Otra diferencia entre estas fuerzas es que la de gravedad siempre es atractiva y la eléctrica puede ser repulsiva

8 Campo Eléctrico Las fuerzas eléctricas como las fuerzas gravitacionales son fuerzas de acción a distancia que se manifiestan sin que haya ningún contacto entre los cuerpos Las fuerzas eléctricas como las fuerzas gravitacionales son fuerzas de acción a distancia que se manifiestan sin que haya ningún contacto entre los cuerpos Estas fuerzas se aproximan a cero cuando las distancias tienden al infinito Estas fuerzas se aproximan a cero cuando las distancias tienden al infinito Cada carga modifica las propiedades del medio que la rodea estableciendo un campo eléctrico análogo al campo gravitacional producido por cada masa: atracción o repulsión Cada carga modifica las propiedades del medio que la rodea estableciendo un campo eléctrico análogo al campo gravitacional producido por cada masa: atracción o repulsión

9 Campo Eléctrico Si una carga que colocada en un punto del espacio, experimenta una fuerza de origen eléctrico, se dice que en este punto existe un campo eléctrico producido por todas las otras cargas q 1, q 2, … y que su intensidad es: Si una carga que colocada en un punto del espacio, experimenta una fuerza de origen eléctrico, se dice que en este punto existe un campo eléctrico producido por todas las otras cargas q 1, q 2, … y que su intensidad es: Como F es un vector y q un escalar, el campo eléctrico es también un vector que tendrá la dirección de F si q es positiva y la dirección contraria si q es negativa Como F es un vector y q un escalar, el campo eléctrico es también un vector que tendrá la dirección de F si q es positiva y la dirección contraria si q es negativa

10 Campo Eléctrico La carga q se denomina generalmente carga de prueba. La carga q se denomina generalmente carga de prueba. El campo eléctrico se simboliza con la letra E, es una magnitud vectorial y sus unidades son: N/C El campo eléctrico se simboliza con la letra E, es una magnitud vectorial y sus unidades son: N/C

11 Potencial Eléctrico Se le llama diferencia de potencial entre dos puntos a la diferencia de energía potencial de una carga dentro de un campo eléctrico entre estos dos puntos dividido por el valor de la carga, o también el trabajo realizado por la fuerza producida por el campo dividido por la carga, es decir, Se le llama diferencia de potencial entre dos puntos a la diferencia de energía potencial de una carga dentro de un campo eléctrico entre estos dos puntos dividido por el valor de la carga, o también el trabajo realizado por la fuerza producida por el campo dividido por la carga, es decir, La diferencia de potencial V a -V b se generaliza V ab y se denomina a veces voltaje entre a y b. La diferencia de potencial V a -V b se generaliza V ab y se denomina a veces voltaje entre a y b. Es una magnitud escalar puesto que es el cociente entre dos magnitudes escalares y su unidad en sistema S.I es de joul/coul que se denomina voltio (v) Es una magnitud escalar puesto que es el cociente entre dos magnitudes escalares y su unidad en sistema S.I es de joul/coul que se denomina voltio (v)

12 Aisladores y Conductores A partir de la teoría atómica de principios del siglo XX quedó establecido científicamente que la materia está compuesta de átomos muy pequeños A partir de la teoría atómica de principios del siglo XX quedó establecido científicamente que la materia está compuesta de átomos muy pequeños Cada átomo tiene un núcleo aún más pequeño, muy denso y cargado positivamente; el cual está rodeado de electrones livianos y cargados negativamente Cada átomo tiene un núcleo aún más pequeño, muy denso y cargado positivamente; el cual está rodeado de electrones livianos y cargados negativamente

13 Aisladores y Conductores En muchos metales los electrones más cercanos están fuertemente ligados al núcleo pero un electrón del exterior puede estar relativamente libre para ser transferido de un átomo a otro En muchos metales los electrones más cercanos están fuertemente ligados al núcleo pero un electrón del exterior puede estar relativamente libre para ser transferido de un átomo a otro Éstos electrones pueden moverse libremente y por lo tanto son llamados electrones libres Éstos electrones pueden moverse libremente y por lo tanto son llamados electrones libres Su movimiento explica la conducción eléctrica por un alambre cuando es conectado a una batería o a un generados eléctrico Su movimiento explica la conducción eléctrica por un alambre cuando es conectado a una batería o a un generados eléctrico

14 Aisladores y Conductores Al contrario de los electrones, los núcleos cargados positivamente están fijos en un lugar dentro del cristal de un metal y no contribuyen en nada a la conducción eléctrica Al contrario de los electrones, los núcleos cargados positivamente están fijos en un lugar dentro del cristal de un metal y no contribuyen en nada a la conducción eléctrica Un buen conductor posee una cantidad apreciable de electrones libres y por eso conduce la carga con una resistencia relativamente pequeña; son conductores los metales Un buen conductor posee una cantidad apreciable de electrones libres y por eso conduce la carga con una resistencia relativamente pequeña; son conductores los metales Un mal conductor, es decir, un aislador, tiene muy pocos o no tiene electrones libres y posee una elevada resistencia a la conducción de cargas o lo que es lo mismo la carga se mueve con dificultad como por ejemplo la goma, la madera, el hule, vidrio, corcho y la mayoría de los plásticos Un mal conductor, es decir, un aislador, tiene muy pocos o no tiene electrones libres y posee una elevada resistencia a la conducción de cargas o lo que es lo mismo la carga se mueve con dificultad como por ejemplo la goma, la madera, el hule, vidrio, corcho y la mayoría de los plásticos

15 Aisladores y Conductores Aquellas sustancias que conducen la carga con menor capacidad que los metales, aunque mayor que los aislantes se les llama semiconductores, por ejemplo: silicio y germanio, utilizados para la fabricación de transistores Aquellas sustancias que conducen la carga con menor capacidad que los metales, aunque mayor que los aislantes se les llama semiconductores, por ejemplo: silicio y germanio, utilizados para la fabricación de transistores Al contrario de lo que sucede en los metales, en los cuales los electrones libres conducen la electricidad, en los líquidos la conducción de carga puede deberse a átomos positivos y negativamente cargados

16 Aisladores y Conductores Cuando se disuelve sal de mesa (NaCl) en agua los dos elementos se disocian formando un ión Na + cargado positivamente y un ión Cl - cargado negativamente Cuando se disuelve sal de mesa (NaCl) en agua los dos elementos se disocian formando un ión Na + cargado positivamente y un ión Cl - cargado negativamente El átomo de Cl ha ganado un electrón y el átomo de Na ha perdido uno quedando cargado positivamente El átomo de Cl ha ganado un electrón y el átomo de Na ha perdido uno quedando cargado positivamente Esta solución llamada electrolito, es buena conductora; la conducción electrolítica es esencialmente el movimiento de éstos iones en direcciones opuestas Esta solución llamada electrolito, es buena conductora; la conducción electrolítica es esencialmente el movimiento de éstos iones en direcciones opuestas

17 Aisladores y Conductores Algunos electrolitos típicos son: cloruro de potasio (K + Cl - ), ácido sulfúrico (H 2 2+ SO 4 2- ) y el agua misma (H + OH - ) Algunos electrolitos típicos son: cloruro de potasio (K + Cl - ), ácido sulfúrico (H 2 2+ SO 4 2- ) y el agua misma (H + OH - ) El que un electrolito conduzca bien o mal la electricidad depende de la valencia química (número de electrones perdidos o ganados), el grado de disociación y la concentración iónica (número de iones por centímetro cúbico)

18 Aisladores y Conductores No todas las soluciones conducen bien la electricidad, depende de la disociación iónica No todas las soluciones conducen bien la electricidad, depende de la disociación iónica Sin embargo, los tejidos del cuerpo localizados bajo la piel son electrolitos; la solución salina fisiológica es básicamente una solución diluida de NaCl y el plasma sanguíneo contiene Na +, K +, Ca +, Mg 2+, Cl- y otros iones Sin embargo, los tejidos del cuerpo localizados bajo la piel son electrolitos; la solución salina fisiológica es básicamente una solución diluida de NaCl y el plasma sanguíneo contiene Na +, K +, Ca +, Mg 2+, Cl- y otros iones El aceite, el alcohol y el azúcar disuelta en el agua, la piel seca, y la mayoría de las membranas biológicas son relativamente malos conductores

19 Corriente Una corriente es un flujo de carga Una corriente es un flujo de carga Cuando una positiva se mueve desde una región de potencial alto a otra de bajo potencial, su energía potencial se transforma a otras formas de energía Cuando una positiva se mueve desde una región de potencial alto a otra de bajo potencial, su energía potencial se transforma a otras formas de energía Por ejemplo, en una resistencia de calefacción la energía potencial de la carga en movimiento se transforma en calor, en una bombilla se transforma en luz y calor, y en un motor se transforma en energía mecánica Por ejemplo, en una resistencia de calefacción la energía potencial de la carga en movimiento se transforma en calor, en una bombilla se transforma en luz y calor, y en un motor se transforma en energía mecánica

20 Corriente Todos los aparatos eléctricos y electrónicos utilizan corriente de un modo u otro, también utilizan corriente los sistemas biológicos, ellas intervienen en el transporte de impulsos nerviosos a lo largo de una fibra nerviosa Todos los aparatos eléctricos y electrónicos utilizan corriente de un modo u otro, también utilizan corriente los sistemas biológicos, ellas intervienen en el transporte de impulsos nerviosos a lo largo de una fibra nerviosa

21 Intensidad de la Corriente Una corriente eléctrica es un flujo de carga y para que pueda mantenerse, alguna fuente debe proveer la energía que conserve la diferencia de potencial entre los extremos de un conductor Una corriente eléctrica es un flujo de carga y para que pueda mantenerse, alguna fuente debe proveer la energía que conserve la diferencia de potencial entre los extremos de un conductor Esta diferencia de potencial es lo que se llama fuerza electromotriz (Fem) y su unidad es el voltio Esta diferencia de potencial es lo que se llama fuerza electromotriz (Fem) y su unidad es el voltio

22 Intensidad de la Corriente Por convención se considera que la dirección de la corriente es la que corresponde al flujo de cargas positivas en un sentido, aunque el flujo real de cargas es debido al desplazamiento de los electrones en sentido contrario Por convención se considera que la dirección de la corriente es la que corresponde al flujo de cargas positivas en un sentido, aunque el flujo real de cargas es debido al desplazamiento de los electrones en sentido contrario En los metales, los electrones externos de los átomos se mueven libremente y los protones de los núcleos están fijos; en cambio en los conductores líquidos se pueden mover tanto los iones positivos como los negativos; así es como una batería convierte energía química en energía eléctrica

23 Intensidad de la Corriente En electricidad se considera que el flujo de cargas negativas en una dirección equivale al flujo de cargas positivas en la dirección opuesta En electricidad se considera que el flujo de cargas negativas en una dirección equivale al flujo de cargas positivas en la dirección opuesta La intensidad de la corriente eléctrica (I) se define como la cantidad total de carga (Q) que pasa por un punto dado del circuito en un tiempo (t) La intensidad de la corriente eléctrica (I) se define como la cantidad total de carga (Q) que pasa por un punto dado del circuito en un tiempo (t)

24 Intensidad de la Corriente Las unidades de la corriente (I) son: Coulomb/segundo que corresponde a la unidad llamada amperio (A) Las unidades de la corriente (I) son: Coulomb/segundo que corresponde a la unidad llamada amperio (A) Como Como

25 Intensidad de la Corriente El trabajo (w) realizado para mover la carga viene dado por: El trabajo (w) realizado para mover la carga viene dado por: Donde V + es el potencial en el borde positivo y V - el potencial en el borde negativo Donde V + es el potencial en el borde positivo y V - el potencial en el borde negativo El trabajo realizado por segundo es la potencia (P) El trabajo realizado por segundo es la potencia (P)

26 Circuitos Los circuitos consisten a menudo en una red de resistencias interconectadas, como lo indica la figura Los circuitos consisten a menudo en una red de resistencias interconectadas, como lo indica la figura El problema básico de la teoría de circuitos es hallar la intensidad de la corriente en cada rama del circuito, cuando se conocen los valores de las resistencias El problema básico de la teoría de circuitos es hallar la intensidad de la corriente en cada rama del circuito, cuando se conocen los valores de las resistencias El análisis de ésta o cualquier otra red utiliza dos principios conocidos como leyes de Kirchhoff El análisis de ésta o cualquier otra red utiliza dos principios conocidos como leyes de Kirchhoff

27 Primera Ley de Kirchhoff La intensidad total de la corriente que entra en un punto cualquiera del circuito es igual a la intensidad que sale del punto La intensidad total de la corriente que entra en un punto cualquiera del circuito es igual a la intensidad que sale del punto Esta ley es una consecuencia del hecho de que no se acumula carga en un punto de un circuito, de modo que sale de él tanta carga como ha entrado Esta ley es una consecuencia del hecho de que no se acumula carga en un punto de un circuito, de modo que sale de él tanta carga como ha entrado

28 Segunda ley de Kirchhoff La diferencia de potencial entre dos puntos cuales quiera de un circuito es la misma a lo largo de cualquier camino que se conecte los puntos Segunda ley de Kirchhoff La diferencia de potencial entre dos puntos cuales quiera de un circuito es la misma a lo largo de cualquier camino que se conecte los puntos

29 LEY DE OHM Gracias a las investigaciones de George Ohm acerca de la conducción eléctrica en barios materiales, se toma como deducción que el cociente entre el voltaje aplicado a un conductor y la corriente, este es constante y se llama resistencia LEY DE OHM Gracias a las investigaciones de George Ohm acerca de la conducción eléctrica en barios materiales, se toma como deducción que el cociente entre el voltaje aplicado a un conductor y la corriente, este es constante y se llama resistencia

30 Formula matemática: luego la unidad de resistencia es

31 Esta ley es valida solo para ciertos materiales (metales), esta ley en su uso de aplicación se da primordialmente en circuitos eléctricos.

32 FUERZA ELECTROMOTRIZ La fuerza electromotriz es la cantidad de energía, por unidad de carga necesaria para hacer circular una carga alrededor de un circuito completo. FUERZA ELECTROMOTRIZ La fuerza electromotriz es la cantidad de energía, por unidad de carga necesaria para hacer circular una carga alrededor de un circuito completo.

33 En el sistema S.I su unidad es el VOLTIO. Ecuación: E= IR + Ir como V= IR E= V + Ir ley de ohm V= E - Ir

34 CONDENSADORES Un condensador consta de dos superficies conductoras, separadas por una delgada lamina aislante. CONDENSADORES Un condensador consta de dos superficies conductoras, separadas por una delgada lamina aislante.

35 Los hilos unidos a las superficies, permiten que el condensador sea conectado en un circuito electrónico.

36 En un circuito, el condensador es simbolizado por esta conectado en serie a una resistencia (R) y una batería. Como hay aislamiento entre las placas del condensador, la carga no puede fluir por este elemento y por lo tanto, no se puede establecer una corriente continua a través de un condensador.

37 Sin embargo cuando el interruptor (s), se encuentra cerrado, se producirá una corriente transitoria a través de la resistencia, puesto que los electrones fluyan de una placa del condensador a otra.

38 En consecuencia, la carga positiva (q) se acumula sobre una placa, mientras que una cantidad igual de carga negativa (q) se acumula en la otra. (V= Vc - Vd) sea igual a la fuerza electromotriz de la batería.

39 La figura muestra que la corriente transitoria (i) es grande en el instante en el que se cierra el interruptor, pero disminuye rápidamente hasta cero cuando el condensador se ha cargado.

40 Al mismo tiempo, el valor de la carga de cada placa del condensador aumente desde cero hasta su valor final.

41 Variación temporal de la corriente transitoria en un circuito de resistencia y condensador

42 variación temporal de la carga en cada una de las placas de un condensador en un circuito de resistencia y condensador

43 En todo momento la carga (q) del condensador es proporcional a su potencial (v) Q= C.V en donde (c) es la constante capacitancia su unidad es coul/volt que es igual al farad (f)

44 Un condensador es un elemento del circuito que ofrece poca resistencia a un potencial alterno y una resistencia infinita a un potencial continuo.

45 POTENCIAL DE NERNST El potencial de reposo de una célula es producido por diferencias en la permeabilidad de la pared celular a los diferentes iones.

46

47

48 POTENCIAL DE NERNST Es negativo cuando la membrana es permeable a los iones positivos, y es positivo cuando la membrana es permeable a los iones negativos.

49 la pared celular actúa como un condensador con carga positiva en el interior y carga negativa en el exterior.

50 La pared celular actúa como un condensador con una área A de unos y un espesor de unos su capacidad C se calcula

51 Tanto en el fluido intracelular como en el extracelular se disuelven muchas clases de iones, pero solamente aquellos iones que pueden difundirse a través de la pared de la célula contribuyen al potencial de Nernst. En el estado de reposo, la pared celular es permeable solo a los iones K+ y Cl-

52

53 La pared de las células nerviosas y musculares tiene la capacidad de cambiar su permeabilidad relativa a los iones K+ y Na+, cuando una célula es estimulada eléctrica, química o mecánicamente, la pared de la célula se hace permeable de repente a los Na+.

54 La repentina subida y bajada del potencial celular, recibe el nombre de potencial de acción.

55 El potencial de nernst se determina tanto por la diferencia en la concentración de los iones en los fluidos intracelulares y extracelulares como por la permeabilidad selectiva de la pared celular a los iones de diferentes clases.

56 El interior del axon tiene un potencial de -85 mV con respecto al fluido extracelular.

57 Transmisión de un impulso nervioso a lo largo de un axon.

58 Cuando un impulso nervioso alcanza una célula muscular, produce un potencial de acción en la célula muscular. Antes de cada latido del corazón se extiende por este un gran potencial de acción. Cuando un impulso nervioso alcanza una célula muscular, produce un potencial de acción en la célula muscular. Antes de cada latido del corazón se extiende por este un gran potencial de acción.

59 ELECTROCARDIOGRAMA NORMAL

60


Descargar ppt "Introducción La electricidad es una fuerza fundamental de la naturaleza, análoga a la de la gravedad, cuya diferencia radica en que la fuerza de la gravedad."

Presentaciones similares


Anuncios Google