La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 PRONÓSTICO ES UNA ESTIMACIÓN CUANTITATIVA O CUALITATIVA DE UNO O VARIOS FACTORES (VARIABLES) QUE CONFORMAN UN EVENTO FUTURO, CON BASE EN INFORMACIÓN.

Presentaciones similares


Presentación del tema: "1 PRONÓSTICO ES UNA ESTIMACIÓN CUANTITATIVA O CUALITATIVA DE UNO O VARIOS FACTORES (VARIABLES) QUE CONFORMAN UN EVENTO FUTURO, CON BASE EN INFORMACIÓN."— Transcripción de la presentación:

1 1 PRONÓSTICO ES UNA ESTIMACIÓN CUANTITATIVA O CUALITATIVA DE UNO O VARIOS FACTORES (VARIABLES) QUE CONFORMAN UN EVENTO FUTURO, CON BASE EN INFORMACIÓN ACTUAL O DEL PASADO

2 2 PORQUÉ? La empresa se mueve en un contexto altamente incierto Política, tecnología y medio ambiente repercuten sobre variables relevantes para la empresa: costos de producción, inventarios, volumen de ventas La empresa debe tomar decisiones sobre Factores Controlables tomando en cuenta Factores Incontrolables.

3 3 FACTORES CONTROLABLES AQUELLOS SOBRE LOS CUALES LA EMPRESA DECIDE SU ESTRUCTURA, NIVELES, POLÍTICA Y MODO DE OPERAR: NIVELES DE PRODUCCIÓN NIVELES DE INVENTARIO CAPACIDAD

4 4 FACTORES INCONTROLABLES AQUELLOS SOBRE LOS CUALES LA EMPRESA NO PUEDE DECIDIR NI MODIFICAR: DEPENDEN DE FACTORES EXTERNOS A LA EMPRESA DEMANDA DEL PRODUCTO COMPETENCIA ECONOMÍA COMPORTAMIENTO DEL CONSUMIDOR

5 5 QUÉ PRONOSTICAR? LA EMPRESA REQUIERE PREDECIR FACTORES INCONTROLABLES:MERCADO, ENTORNO, ECONOMÍA, QUE SON INCIERTOS, PARA DECIDIR (PLANEAR) SOBRE FACTORES CONTROLABLES: NIVELES DE INVENTARIO, DE PRODUCCIÓN, CAPACIDAD.

6 6 OBJETIVO REDUCIR LA INCERTIDUMBRE DEL FUTURO, MEDIANTE LA ANTICIPACIÓN DE EVENTOS CUYA PROBABILIDAD DE OCURRENCIA SEA RELATIVAMENTE ALTA, RESPECTO A OTROS EVENTOS POSIBLES.

7 7 CLASIFICACIÓN DE PRONÓSTICOS HORIZONTE DE PLANEACIÓN LARGO PLAZO: inversión en capital, localización de planta, nuevos productos, expansión, crecimiento del mercado, tecnología MEDIANO PLAZO: tamaño de la fuerza de trabajo, ciclicidad de la demanda, requerimientos de capacitación CORTO PLAZO: frecuencia de pedidos, demanda, niveles de inventario requeridos

8 8 CLASIFICACIÓN DE PRONÓSTICOS POR ÁREAS DE LA EMPRESA MERCADOTECNIA: crecimiento del mercado, pronósticos económicos y poblacionales PRODUCCIÓN: programas de expansión, pronóstico de la demanda a mediano y largo plazo FINANZAS: presupuesto de gastos, ventas del próximo año

9 9 CLASIFICACIÓN DE TÉCNICAS DE PRONÓSTICOS POR TIPO DE DATOS CUALITATIVAS: técnicas subjetivas. Utilizan información cualitativa (experiencia de expertos). CUANTITATIVAS: se basan en datos numéricos y utilizan herramienta matemática y estadística para su elaboración.

10 10 TÉCNICAS CUALITATIVAS LA MISMA TÉCNICA USADA POR DOS EXPERTOS DISTINTOS PUEDE PRODUCIR RESULTADOS DIFERENTES INVESTIGACIÓN DE MERCADOS ANALOGÍAS HISTÓRICAS MÉTODO DELPHI CONSENSO GENERAL IMPACTO CRUZADO ANÁLISIS DE ESCENARIOS

11 11 OBTENER INFORMACIÓN ACERCA DEL COMPORTAMIENTO REAL DEL MERCADO, MEDIANTE ENCUESTAS DIRIGIDAS AL PÚBLICO CONSUMIDOR O A PARTIR DE LA EXPERIENCIA DE VENDEDORES, PARA CONCLUIR SOBRE EL COMPORTAMIENTO FUTURO INVESTIGACIÓN DE MERCADOS

12 12 ANALOGÍAS HISTÓRICAS SE FUNDAMENTA EN UN ANÁLISIS COMPARATIVO DE CASOS SIMILARES AL QUE SE ESTUDIA. TRATA DE RECONOCER PATRONES DE SIMILITUD PARA SACAR CONCLUSIONES Y OBTENER UN PRONÓSTICO: productos similares, producto en otros mercados, etc.

13 13 MÉTODO DELPHI PRETENDE LLEGAR A UN CONSENSO A TRAVÉS DE LA OPINIÓN DE EXPERTOS, EVITANDO LA CONFRONTACIÓN DE LOS MISMOS, YA QUE NO EXISTE UNA INTERACCIÓN DIRECTA ENTRE LOS PARTICIPANTES. ESTOS EXPRESAN LIBREMENTE SUS OPINIONES.

14 14 MÉTODO DELPHI Los expertos responden un cuestionario Se obtiene la media y desviación de cada pregunta Se pide justificar respuesta a aquellos que se encuentran fuera del rango de dos o mas desviaciones, sobre la media de cada pregunta. Se pasa esta opinión a todos los participantes y se vuelve a aplicar el cuestionario

15 15 MÉTODO DELPHI El proceso se repite hasta lograr un consenso en las diferentes preguntas o hasta identificar subgrupos de opiniones Con la información obtenida se procede a la toma de decisiones.

16 16 CONSENSO GENERAL SE REÚNE A UN GRUPO DE EXPERTOS A PARTIR DE UNA LLUVIA DE IDEAS SE ESTABLECEN DISCUSIONES HASTA LLEGAR A UN ACUERDO QUE REFLEJE EL SENTIR DE LA MAYORÍA

17 17 IMPACTO CRUZADO DESARROLLAR UNA MATRIZ PARA ESTUDIAR LOS EFECTOS DE DIVERSOS FACTORES SOBRE LA PROBABILIDAD DE OCURRENCIA DE UN EVENTO, ASÍ COMO EL IMPACTO QUE ESTA PUEDA TENER EN OTRA SERIE DE EVENTOS

18 18 IMPACTO CRUZADO Determinar los eventos a incluirse en el estudio Estimar la probabilidad inicial de cada evento y la probabilidad condicional de cada par de eventos Seleccionar eventos en forma aleatoria y calcular su repercusión sobre los demás eventos como resultado de la ocurrencia o no del evento elegido.

19 19 ANÁLISIS DE ESCENARIOS Describir diferentes escenarios futuros posibles (mas probable, probable, poco probable) considerando factores que los determinen (cambios en la población, inflación, variación de la demanda) para reconocer las implicaciones a largo plazo de los cambios posibles

20 20 TÉCNICAS CUANTITATIVAS INFORMACIÓN: REQUIEREN DE DATOS HISTÓRICOS DE LAS VARIABLES INVOLUCRADAS SUPUESTO: EL PATRÓN HISTÓRICO DE LAS VARIABLES SEGUIRÁ SIENDO VÁLIDO EN EL FUTURO ANALIZADO

21 21 TÉCNICAS CUANTITATIVAS EXTRAPOLATIVAS: ajustes de curvas y métodos de suavizamiento. Los patrones observados en el pasado se proyectan al futuro ANÁLISIS DE SERIES DE TIEMPO: métodos de descomposición y modelos ARIMA (autorregresivos, integrados y promedios móviles) MODELOS CAUSALES: modelos econométricos (regresión)

22 22 ETAPAS DE UN PRONÓSTICO DEFINIR EL PROPÓSITO RECOLECTAR DATOS: fuentes primarias o secundarias PREPARAR LOS DATOS:ordenar y clasificar SELECCIONAR LA TÉCNICA ADECUADA: cualitativa o cuantitativa EJECUTAR EL PRONÓSTICO: estimar errores DAR SEGUIMIENTO: confrontar con información actual

23 23 ETAPAS DE UN PRONÓSTICO Facilite la toma de decisiones en el momento adecuado Que sea entendida por el que toma las decisiones Pase un análisis costo-beneficio Cumpla con las restricciones del sistema: tiempo disponible, datos, disponibilidad de cómputo. Cumpla con los criterios de: precisión, estabilidad, objetividad SELECCIÓN DE LA TÉCNICA ADECUADA: LA MEJOR TÉCNICA ES AQUELLA QUE

24 24 TIPOS DE DATOS OBSERVADOS EN UN MOMENTO PRECISO DEL TIEMPO: un día, una hora, una semana, etc.. Ejemplo: observar una característica en una muestra de productos para controlar calidad, ingreso de la población, grado de escolaridad de empleados, etc... Objetivo: extrapolar a toda la población las características de la muestra

25 25 TIPO DE DATOS SERIES DE TIEMPO: una sucesión cronológica de observaciones de una variable a intervalos iguales de tiempo. Ejemplo: ventas trimestrales de los últimos 5 años, desempleo en los últimos años, precio de un producto en el tiempo, etc.. Objetivo: analizar patrones del pasado que puedan extrapolarse al futuro

26 26 PATRONES O COMPONENTES DE UNA SERIE DE TIEMPO TENDENCIA: componente de muy largo plazo CICLICIDAD: componente de largo plazo ESTACIONALIDAD:componente de corto plazo FACTOR ALEATORIO: componente de muy corto plazo

27 27 TENDENCIA Crecimiento de la población Inflación Ventas de un producto en su etapa de crecimiento en el ciclo de vida COMPONENTE DE MUY LARGO PLAZO QUE REPRE- SENTA EL CRECIMIENTO O DECRECIMIENTO DE LOS DATOS EN UN PERÍODO EXTENDIDO FUERZAS QUE AFECTAN Y EXPLICAN TENDENCIA:

28 28 TENDENCIA: ventas de SEARS ( )

29 29 ESTACIONALIDAD PERÍODOS ESCOLARES PERÍODOS VACACIONALES PRODUCTOS DE ESTACIÓN ESTACIONES DEL AÑO PATRÓN DE CAMBIO QUE SE REPITE AÑO CON AÑO EN EL MISMO NÚMERO DE PERÍODOS FUERZAS QUE AFECTAN Y EXPLICAN ESTACIONALIDAD:

30 30 ESTACIONALIDAD

31 31 CICLICIDAD PERÍODOS DE EXPANSIÓN Y DE RECESIÓN DE LA ECONOMÍA CICLOS ECONÓMICOS FLUCTUACIÓN ALREDEDOR DE LA TENDENCIA QUE SE REPITE PERO A INTERVALOS DISTINTOS Y CON AMPLITUDES DISTINTAS FUERZAS QUE AFECTAN Y EXPLICAN CICLICIDAD:

32 32 CICLICIDAD

33 33 FACTOR ALEATORIO CAMBIOS CLIMÁTICOS DESASTRES NATURALES HUELGAS HECHOS FORTUITOS MIDE LA VARIABILIDAD DE UNA SERIE CUANDO LOS DEMÁS COMPONENTES SE HAN ELIMINADO O NO EXISTEN FUERZAS QUE AFECTAN Y EXPLICAN ALEATORIEDAD

34 34 SERIE ALEATORIA:generada por números aleatorios

35 35 SERIE ESTACIONARIA SISTEMAS DE PRODUCCIÓN CON TASA UNIFORME VENTAS DE PRODUCTOS EN SU ETAPA DE MADUREZ EN EL CICLO DE VIDA SERIE CUYO VALOR PROMEDIO NO CAMBIA A TRAVÉS DEL TIEMPO FUERZAS QUE AFECTAN Y EXPLICAN ESTACIONARIEDAD

36 36 SERIE ESTACIONARIA

37 37 SERIE CON VARIOS PATRONES

38 38 PATRONES Y CORRELOGRAMAS Una forma de saber si la serie tiene Tendencia, Estacionalidad, es una serie Aleatoria o una serie Estacionaria es mediante la observación del Correlograma. Correlograma: gráfica que muestra los coeficientes de autocorrelación de la serie

39 39 AUTOCORRELACIÓN CORRELACIÓN DE LA SERIE CON ELLA MISMA REZAGADA UNO O VARIOS PERÍODOS (Y t -Y) (Y t-k - Y) (Y t -Y) rk=rk= donde: Y t = es la observación en el tiempo t Y = la media de los valores de la serie r k = coeficiente de Autocorrelación de orden k

40 40 TENDENCIA Si la serie tiene Tendencia los coeficientes de autocorrelación son significativamente distintos de cero en los primeros rezagos y caen gradualmente a cero.

41 41 SERIE DE DIFERENCIAS Para quitar la tendencia a la serie se usa el Método de Diferencias: se genera una nueva serie en la cual cada observación es la diferencia de la observación t y la observación t-1 de la serie original. Dif t = Y t - Y t-1

42 42 ESTACIONALIDAD Si la serie tiene un patrón estacional el coeficiente de autocorrelación correspondiente a cierto rezago (4 si la serie es trimestral, 12 si es anual, etc.) es significativamente distinto de cero.

43 43 ESTACIONALIDAD Quitando la tendencia a la serie Murphy (serie D(Murphy)), se observa una correlación significativamente distinta de cero en el rezago número 12 (observar que la serie es mensual)

44 44 SERIE ALEATORIA Si la serie es aleatoria los coeficientes de autocorrelación son todos significativamente cero

45 45 SERIE ESTACIONARIA Los coeficientes de autocorrelación de una serie estacionaria son cero excepto para los dos o tres primeros rezagos

46 46 TÉCNICAS EXTRAPOLATIVAS NOTACIÓN: Y t : observación en el período t F t : pronóstico para el período t e t = Y t - F t : residuo en el período t Los residuos permiten observar que tan bueno es el modelo para pronosticar períodos pasados

47 47 MEDIDAS DE ERROR SIRVEN PARA EVALUAR LA UTILIDAD DE UNA TÉCNICA DE PRONÓSTICOS, CALCULANDO UNA MEDIDA GLOBAL DE LOS RESIDUOS. RESIDUOS: LA DIFERENCIA ENTRE EL VALOR REAL DE LA VARIABLE Y EL VALOR ESTIMADO POR EL MODELO

48 48 MEDIDAS DE ERROR LAS MEDIDAS DE ERROR SE CALCULAN SOBRE UNA RANGO DE DATOS DE PRUEBA COMÚN (a todos los modelos) CONSTITUIDO POR K OBSERVACIONES HISTÓRICAS Y REALIZANDO LOS PRONÓSTICOS CORRESPONDIENTES CON LA TÉCNICA SELECCIONADA

49 49 MEDIDAS DE ERROR ERROR MEDIO (ME) : ME e i k = ERROR MEDIO ABSOLUTO:MAD= ERROR MEDIO CUADRÁTICO (MSE): e i | k ERROR MEDIO ABSOLUTO PORCENTUAL: proporción del error identifica sesgo distancia promedio penaliza errores grandes e i ) 2 = k MAPE k MSE = e i / y |

50 50 SERIE DE VENTAS: ACME OBSTRIM. 1TRIM. 2TRIM. 3TRIM NA 1993 NA NA NA NA 1994 NA

51 51 MODELOS NAIVE ÚTILES CUANDO LA INFORMACIÓN MAS RELEVANTE ES LA DE LOS PERÍODOS MAS RECIENTES MODELO 1: F t+1 = Y t MODELO 2: F t+1 = Y t +(Y t - Y t-1 ) MODELO 3: F t+1 =Y t-3

52 52 MODELOS NAIVE: F t+1 = Y t ACMEACME NA Serie con tendencia y estacionalidad

53 53 MODELOS NAIVE: F t+1 = Y t Serie con tendencia y estacionalidad

54 54 MODELOS NAIVE: F t+1 = Y t +(Y t - Y t-1 ) ACMEACME NA NA

55 55 MODELOS NAIVE: F t+1 = Y t +(Y t - Y t-1 )

56 56 MODELOS NAIVE: F t+1 =Y t-3 ACMEACME NA NA NA NA

57 57 MODELOS NAIVE: F t+1 =Y t-3

58 58 ERRORES

59 59 MEDIDAS DE ERROR EL MODELO 3 TIENE MENOR MEDIDA DE ERROR EXCEPTO PARA ME. ES EL MEJOR MODELO EL MODELO 1 TIENE MEJOR ME PORQUE LOS ERRORES SE CANCELAN. NO HAY SESGO. NO ES EL MEJOR MODELO.

60 60 MODELO DE LA MEDIA TOTAL F t+1 = Y t n ÚTIL CUANDO LA SERIE ES ESTACIONARIA SE OBTIENE DEL PROMEDIO DE TODAS LAS OBSERVACIONES HISTÓRICAS

61 61 MODELOS DE PROMEDIOS MÓVILES (simples de orden 3) F t+1 = Y t + Y t-1 + Y t-2 3 SE PROMEDIAN SOLO LAS ÚLTIMAS OBSERVACIONES EL ORDEN SE DETERMINA A PRIORI UN ORDEN GRANDE ELIMINA LOS PICOS (suaviza) UN ORDEN PEQUEÑO PERMITE SEGUIR MUY DE CERCA LOS CAMBIOS DE CORTO PLAZO

62 62 PROMEDIO MÓVIL DE ORDEN 2

63 63 PROMEDIO MÓVIL DE ORDEN 3

64 64 PROMEDIO MÓVIL DE ORDEN 4

65 65 PROMEDIO MÓVIL DOBLE LINEAL (Brown) F t+p =A t +p* B t

66 66 PROMEDIO MÓVIL DOBLE LINEAL (Brown)

67 67 SUAVIZAMIENTO EXPONENCIAL(simple) F t+1 = Y t + ( 1- ) F t PROMEDIA LOS VALORES HISTÓRICOS HASTA EL PERÍODO t, CON PONDERACIONES QUE DECRECEN EXPONENCIALMENTE INCLUYE UN PARÁMETRO QUE DEFINE LA VELOCIDAD DE DECAIMIENTO 0 F t INCLUYE LAS PONDERACIONES DE OBSERVACIONES ANTERIORES

68 68 SUAVIZAMIENTO EXPONENCIAL SIMPLE ( )

69 69 SUAVIZAMIENTO EXPONENCIAL SIMPLE ( )

70 70 SUAVIZAMIENTO EXPONENCIAL DOBLE ( ) F t+p= a t+p b t Donde= at= 2At - At bt= / (At - At) At= Yt+( )A t-1 At= At+( )A t

71 71 SUAVIZAMIENTO EXPONENCIAL DOBLE ( )

72 72 SUAVIZAMIENTO EXPONENCIAL DOBLE ( )

73 73 SUAVIZAMIENTO DE HOLT = 0.31, = 0

74 74 SUAVIZAMIENTO DE HOLT

75 75 SUAVIZAMIENTO DE WINTERS = 1, = 0, = 0

76 76 SUAVIZAMIENTO DE WINTERS

77 77 MEDIDAS DE ERROR DADO QUE LA SERIE TIENE COMPONENTE ESTACIONAL, EL MEJOR MODELO ES WINTERS

78 78 EL MODELO DE REGRESIÓN DESCRIBE LA RELACIÓN ENTRE LA VARIABLE A PRONOSTICAR (VARIABLE DEPENDIENTE, CON OTROS FACTORES (VARIABLES INDEPENDIENTES) QUE INFLUYEN EN EL COMPORTAMIENTO DE ESTA. UNA VEZ IDENTIFICADAS LAS VARIABLES INDEPENDIENTES QUE INFLUYEN (ESTÁN CORRELACIONADAS) SOBRE LA VARIABLE DEPENDIENTE, EL MODELO DESCRIBE ESTA RELACIÓN Y LA CUANTIFICA

79 79 REGRESIÓN LINEAL VENTAS = * PUBLICIDAD+ 2 * PRECIO+ 3 * PERÍODO+ U VENTAS: VARIABLE DEPENDIENTE, EXPLICADA, ENDÓGENA PUBLICIDAD, PRECIO, PERÍODO: VARIABLES INDEPENDIENTES, EXPLICATIVAS, EXÓGENAS. EL MODELO ASUME QUE PUBLICIDAD, PRECIO Y PERÍODO SON VARIABLES CORRELACIONADAS CON LAS VENTAS EL MODELO PRETENDE EXPLICAR ESTA RELACIÓN ES IMPORTANTE DEFINIR LA UNIDAD DE MEDIDA DE CADA VARIABLE U= ERROR DEL MODELO

80 80 REGRESIÓN LINEAL VENTAS = * PUBLICIDAD+ 2 * PRECIO+ 3 * PERÍODO+ U LA FUNCIÓN DE REGRESIÓN POBLACIONAL (FRP): ES UNA REPRESENTACIÓN TEÓRICA DEL PROBLEMA, QUE REPRESENTA LA CORRELACIÓN LINEAL DE LAS VENTAS CON LAS VARIABLES INDEPENDIENTES EL ANÁLISIS DE REGRESIÓN ESTIMA EL MODELO TEÓRICO, A PARTIR DE INFORMACIÓN MUESTRAL (ver Tabla 1) CALCULANDO LA FUNCIÓN DE REGRESIÓN MUESTRAL (FRM)

81 81

82 82 REGRESIÓN LINEAL A PARTIR DE LA MUESTRA SE OBTIENEN LOS COEFICIENTES (b0, b1, b2 y b3) DEL MODELO MUESTRAL: VENTAS = b 0 + b 1 * PUBLICIDAD+ b 2 * PRECIO+b 3 * PERÍODO +e LOS COEFICIENTES SE CALCULAN MEDIANTE LA TÉCNICA DE MÍNIMOS CUADRADOS LINEALES CUANTO MAS REPRESENTATIVA SEA LA MUESTRA MEJOR SERÁN LOS ESTIMADORES EL ANÁLISIS DE LOS ESTIMADORES REQUIERE INFERENCIA ESTADÍSTICA

83 83 REGRESIÓN LINEAL NOTACIÓN Y= VARIABLE DEPENDIENTE OBSERVADA Y= VALOR PRONOSTICADO X= VARIABLES INDEPENDIENTES (X = X1,X2,X3) Y= b 0 + b 1 * X1+ b 2 * X2+ b 3 *X3 E(Y/X) = * X1+ 2 * X2+ 3 * X3 U= E(Y/X) - Y (ERROR ALEATORIO) e= Y - Y (ERROR DEL PRONÓSTICO)

84 84 REPRESENTACIÓN GRÁFICA FRP: E(Y/X) FRM Xi Yi Ui ei

85 85 NOTACIÓN MATRICIAL SI SE TIENEN n OBSERVACIONES MUESTRALES (para cada variable) Y k VARIABLES: Y: VECTOR DE VALORES DE LA VARIABLE Y (n *1) VECTOR DE COEFICIENTES DE LA FRP (k*1) X: MATRIZ DE VALORES DE LAS VARIABLES INDEPENDIENTES (n*k) b: VECTOR DE COEFICIENTES DE LA FRM (k*1) U: VECTOR DE ERRORES (FRP) (n*1) e: VECTOR DE ERRORES DEL PRONÓSTICO (FRM) (n*1)

86 86 NOTACIÓN MATRICIAL SE PRETENDE ESTIMAR: E(Y/X)= X ESTIMANDO EL VECTOR DE MANERA DE MINIMIZAR LOS ERRORES Ui, QUE REPRESENTAN LA DISTANCIA ENTRE CADA OBSERVACIÓN Y LA FRP U ES UNA VARIABLE ALEATORIA NO OBSERVABLE, QUE REPRESENTA TODAS LAS VARIABLES NO CONSIDERADAS EXPLÍCITAMENTE EN EL MODELO

87 87 NOTACIÓN MATRICIAL LA FUNCIÓN DE REGRESIÓN MUESTRAL (FRM): Y= X b + e Y = X b Y : VALORES DE LA VARIABLE DEPENDIENTE X: MATRIZ DE VALORES DE LAS VARIABLES INDEPENDIENTES b: ESTIMADORES DE LOS PARÁMETROS Y: ESTIMADOR DE Y e: ESTIMADOR DE LOS ERRORES U

88 88 ESTIMACIÓN DE PARÁMETROS LOS COEFICIENTES SE ESTIMAN POR MÍNIMOS CUADRADOS e = Y - X b :errores e e = (Y - X b) (Y - X b) :suma de errores cuadrados DIFERENCIANDO RESPECTO DE b, IGUALANDO A CERO Y DESPEJANDO b, SE OBTIENEN LOS ESTIMADORES EXISTEN PAQUETES COMPUTACIONALES QUE REALIZAN ESTA OPERACIÓN, Y ADEMÁS PROPORCIONAN INFORMACIÓN ESTADÍSTICA

89 89 EJEMPLO (ver Tabla1) (con E-VIEWS) VARIABLE DEPENDIENTE: VENTAS (Y) VARIABLES INDEPENDIENTES: PRECIO Y PUBLICIDAD MATRIZ DE CORRELACIÓN: VENTAS PUBLICIDAD PRECIO VENTAS PUBLICIDAD PRECIO

90 90 EJEMPLO

91 91 EJEMPLO

92 92 EL PRONÓSTICO SI EL MODELO ES ESTADÍSTICAMENTE ADECUADO, EL PRONÓSTICO DE LAS VENTAS SE REALIZA: SUSTITUYENDO LOS VALORES DE LAS VARIABLES INDEPENDIENTES PUBLICIDAD = 500 PRECIO= E(Y/X) ~ Y = * * Y = 2,838,746.1

93 93 SUPUESTOS DEL MODELO DE REGRESIÓN NORMALIDAD: Ui ~ N(0, 2 INDEPENDENCIA DE ERRORES: cov (Ui,Uj)=0 HOMOSCEDASTICIDAD: var (Ui /Xi)= 2 MULTICOLINEALIDAD: (Xi,Xj) =0 BAJO ESTOS SUPUESTOS, LOS ESTIMADORES SON: INSESGADOS: E(b)= LINEALES: b ES FUNCIÓN LINEAL DE Y DE VARIANZA MÍNIMA: var(b)

94 94 SUPUESTOS DEL MODELO DE REGRESIÓN SI LOS SUPUESTOS NO SON VIOLADOS PUEDE HACERSE INFERENCIA ESTADÍSTICA: PRUEBAS DE SIGNIFICANCIA DE LOS COEFICIENTES Ho: = 0 H1: 0 EN EL EJEMPLO, o NO ES SIGNIFICATIVO (NÓTESE QUE SE VIOLA EL SUPUESTO DE MULTICOLINEALIDAD)

95 95 R 2 : COEFICIENTE DE DETERMINACIÓN R 2 : ES EL PORCENTAJE DE VARIACIÓN DE LA VARIABLE DEPENDIENTE, EXPLICADA POR LAS VARIABLES DEPENDIENTES EN EL EJEMPLO: LAS VARIABLES PRECIO Y PUBLICIDAD EXPLICAN EN UN 83% A LA VARIABLE VENTAS

96 96 ESTADÍSTICO DURBIN- WATSON d = 2(1- e i e i-1 e i 2 ) PERMITE DETECTAR INDEPENDENCIA DE ERRORES DEPENDE DEL NÚMERO DE VARIABLES INDEPENDIENTES EN EL MODELO Y DEL NÚMERO DE OBSERVACIONES EN LA MUESTRA UN VALOR DE d CERCANO A 2 INDICA QUE LOS ERRORES SON INDEPENDIENTES

97 97


Descargar ppt "1 PRONÓSTICO ES UNA ESTIMACIÓN CUANTITATIVA O CUALITATIVA DE UNO O VARIOS FACTORES (VARIABLES) QUE CONFORMAN UN EVENTO FUTURO, CON BASE EN INFORMACIÓN."

Presentaciones similares


Anuncios Google