La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Capa de Transporte.

Presentaciones similares


Presentación del tema: "Capa de Transporte."— Transcripción de la presentación:

1 Capa de Transporte

2 Servicios Servicios parecidos a la capa de red
Orientados a conexión No orientados a conexión ¿ Porqué dos capas distintas ? La capa de transporte sólo depende de los usuarios finales y la de red no Puede haber varias capas de transporte especializadas en tipos de tráfico.

3 Relación entre capas

4 Anidado de TPDU

5 Calidad de servicio La capa de transporte debe mejorar la QoS de la subred Posibles parámetros de QoS Negociación de opciones

6 Primitivas Lo más interesante es el servicio orientado a conexión
Se trata de brindar un flujo confiable de datos de extremo a extremo Ejemplo de primitivas de una capa de transporte:

7 Diagrama de estados cliente: línea sólida - servidor: línea punteada

8 Primitivas con Berkeley sockets

9 Capas de Enlace y Transporte
Las funciones de capa de transporte son similares a las de capa de enlace de datos Control de errores Secuenciamiento Control de flujo Pero hay diferencias...

10 Capas de Enlace y Transporte
Diferencias: Direccionamiento Complejidad en el establecimiento de conexión Capacidad de almacenamiento en la red Diferencias de retardos

11 Direccionamiento Necesidad de conocer la máquina destino
Necesidad de identificar el servicio Ej en TCP/IP dirección IP + puerto TCP Puertos bien conocidos Servidor de procesos (escucha en todos los puertos) Servidor de nombres (ej. DNS)

12 Direcciones: TSAP NSAP

13 Servidor de procesos

14 Establecimiento de conexión
Más difícil de lo que parece Problema de los duplicados retardados Posible repetición de conexiones Posibles soluciones: Direcciones por una única vez Identificación de conexión (y caídas ?) Vida limitada de los paquetes subred restringida, contador de saltos, timestamp

15 Establecimiento de conexión (Tomlinson)
Establecer conexión Reloj de tiempo real en cada máquina que no se apaga Tiempo T=múltiplo de tiempo de vida de los paquetes Zona prohibida Conexión en tres tiempos con secuencias independientes para cada extremo

16 Números de secuencia Zona prohibida

17 Establecimiento en 3 fases

18 Fin de conexión Terminar conexión simétrica asimétrica
se cierran separadamente ambos sentidos complicación del problema de los dos ejércitos asimétrica puede provocar pérdida de datos

19 Desconexión con pérdida de información

20 Problema de los dos ejércitos

21 Diferentes escenarios de corte

22 Buffers y control de flujo
Máquinas con muchas conexiones simultáneas ¿ Cómo optimizar el buffer ? Políticas Buffer dinámico Posible deadlock si se pierde actualización Limitaciones por capacidad de la red Ventana dependiendo de la carga: W = c.r c = capacidad de la red en paquetes por segundo. r = tiempo de ida y vuelta.

23 Diferentes políticas de manejo de buffers

24 Posible deadlock

25 Multiplexado Multiplexado Upward multiplexing Downward multiplexing
políticas de precios en las conexiones de red varias conexiones de transporte sobre una de red Downward multiplexing enlaces rápidos pero la ventana limita una conexión de transporte abre varias conexiones de red y reparte la carga

26 Multiplexado: Upward y downward

27 Recuperación de caídas
Recuperación frente a problemas Caídas de la red con circuitos virtuales vs. datagramas Caídas en las máquinas de los extremos No se puede hacer transparente a las capas superiores Existen casos donde se pueden duplicar o perder según las políticas del transmisor y el receptor

28 Caídas en las máquinas Según estrategia del servidor y el cliente
A - Ack, W - Write, C - Crash

29 Transmission Control Protocol TCP
Objetivo: Flujo confiable de bytes sobre una red no confiable Diferentes tecnologías de red en el medio Robusto frente a problemas de la red Entidad TCP y protocolo TCP Recibe flujo de la capa superior y lo parte en trozos que envía en paquetes IP El receptor lo reensambla

30 Modelo de servicio de TCP
Conexión entre 2 sockets Identificación de los sockets formada por dirección IP + puerto (puerto=TSAP) Las conexiones se identifican con las direcciones de los sockets de ambos extremos Puertos : puertos bien conocidos (RFC 1700) Full duplex y punto a punto

31 TCP Las conexiones TCP son un flujo de bytes, no de mensajes (capas superiores) Puede esperar para enviarlo según su política de buffer (Pero existe push) También datos urgentes. (Ejemplo ^C)

32 Mensajes y bytes Un mensaje (ABCD) es enviado en 4 paquetes IP separados, pero devuelto a la aplicación destino como un conjunto de bytes ABCD

33 Protocolo TCP Número de secuencia de 32 bits
Unidad de datos = Segmento Encabezado de de 20 bytes Máximo del segmento carga del paquete IP 64 Kbytes MTU de la red. Típico 1500 bytes Usa protocolo de ventanas deslizantes de tamaño de ventana variable

34 Problemas con los segmentos
Pérdidas de segmentos por rutas congestionadas o enlaces caídos Segmentos llegan fuera de orden Segmentos se duplican por retardos que obligan a la retransmisión

35 Encabezado TCP

36 Pseudo-encabezado para cálculo del checksum

37 Opciones Escala de la ventana. Repetición selectiva (nak)

38 Manejo de conexiones

39 Estados de la conexión

40 Significado de los estados

41 Política de transmisión en TCP
El que recibe informa sobre el tamaño de la ventana (tamaño de buffer disponible) Ventana 0 y siguiente anuncio se pierde bloqueo urgentes y prueba para reanuncio de ventana Posibilidad de retardar el envío (hasta 500 ms) para esperar a llenar ventana del receptor

42 Manejo de ventana en TCP

43 Problemas de performance
Algoritmo de Nagle esperar el ack del primer byte y luego bufferear se puede enviar también cuando se llena media ventana o el tamaño máximo del segmento Malo en aplicaciones tipo X-Windows (mouse) Síndrome de la ventana tonta Aviso de ventana de 1 byte Clark: No avisar disponibilidad de ventana hasta segmento máximo o mitad del buffer libre

44 Ventana tonta

45 Control de congestión en TCP
Hipótesis: las pérdidas de paquetes son por congestión (los enlaces son buenos ahora) Ventana de congestión Comienza con la mitad del tamaño máximo de segmento (64Kbytes) como umbral Aumenta duplicando tamaño desde un segmento a cada ACK (slow start !) A partir del umbral sigue lineal Pérdida o ICMP Source Quench: nivel a la mitad de la ventana y ventana 1 segmento.

46 Control de flujo y congestión

47 Ventana de congestión

48 Gestión de temporizadores
Varios temporizadores el más importante es el de retransmisión Jacobson: RTT = a RTT + ( 1 - a ) M a = 7/8 D = a D + ( 1 - a ) |RTT - M| Timeout = RTT + 4 * D Karn: No calcular sobre retransmisiones Se duplica el timeout a cada pérdida. Otros: persistencia, mantener vivo, espera al cerrar

49 Dispersión de retardos en capa de enlace y de transporte

50 UDP UDP no orientado a conexión
Básicamente es un paquete IP con un encabezado mínimo de capa de transporte


Descargar ppt "Capa de Transporte."

Presentaciones similares


Anuncios Google