La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Solución Cuando la fuerza que actúa sobre un cuerpo tiene la misma dirección y sentido que el desplazamiento (fig A), el trabajo se define como el producto.

Presentaciones similares


Presentación del tema: "Solución Cuando la fuerza que actúa sobre un cuerpo tiene la misma dirección y sentido que el desplazamiento (fig A), el trabajo se define como el producto."— Transcripción de la presentación:

1

2 Solución Cuando la fuerza que actúa sobre un cuerpo tiene la misma dirección y sentido que el desplazamiento (fig A), el trabajo se define como el producto de la fuerza que actúa por el desplazamiento producido: Sin embargo, en muchos casos, la fuerza aplicada a una cuerpo no tiene la misma dirección y sentido que el movimiento de éste. En estos casos la fuerza que debemos considerar para calcular el trabajo es la fuerza efectiva que se realice en la dirección del desplazamiento, cuyo valor es Por consiguiente, el trabajo es: 1)Un bloque se desplaza 12m sobre la superficie horizontal en que se apoya, al actuar sobre él una fuerza de 250N. Calcula el trabajo realizado por la fuerza: a)Si tiene la misma dirección y sentido del movimiento. b)Forma un ángulo de 45º con el desplazamiento. c)Forma un ángulo de 90º con el desplazamiento. d)Si el trabajo realizado en el apartado a) se efectúa en 6 s, ¿cuál es la potencia mecánica media en kw y en CV?

3 Que se reduce a la primera cuando =0, es decir, cuando coinciden en dirección y sentido producido. b) No coinciden la dirección de la fuerza con el desplazamiento: disponemos de los siguientes datos: Fuerza que actúa sobre el bloque: F= 250 N. Desplazamiento: S =12 m Tiempo: t= 6 s Ángulos que forman la fuerza aplicada y el desplazamiento:a)0º, b)45º,c)90º. Las incógnitas son el trabajo realizado y la potencia mecánica. a)Coinciden en dirección y sentido la fuerza y el desplazamiento:

4 c) La fuerza y el desplazamiento son perpendiculares, forman un ángulo de 90º, y como cos 90ºes igual a cero, el trabajo es nulo: d ) En la definición de trabajo no interviene el tiempo, sin embargo, es un factor muy importante para determinar la eficacia, la potencia, de una máquina. Un motor es muy potente si es capaz de realizar mucho trabajo en poco tiempo. Se llama potencia media al cociente entre el trabajo realizado y el tiempo empleado: El vatio es la unidad de potencia en el S.I. El kw es un múltiplo que equivale a 10 3 w Otra unidad de potencia muy utilizada en la practica es el CV (caballo de vapor) que equivale a 735,5 vatios. Por tanto, una potencia de 500w equivale a:

5 2) Una grúa levanta 1000 kg de cemento a una altura de 40 m en un edificio de construcción, y después desplaza la carga horizontalmente 20 m. ¿Qué trabajo mecánico realiza? Solución: Para elevar el cemento, la grúa ejerce verticalmente hacia arriba una fuerza igual al peso del cemento que eleva: El trabajo que realiza en el desplazamiento vertical es: En el desplazamiento horizontal, la fuerza es perpendicular al desplazamiento y el trabajo realizado es nulo. Por consiguiente, el trabajo mecánico realzado es igual a 3,92 · 10 5 J. F P = mg

6 3) Juan, de 70 kg, sube a una altura de 20 m. a) ¿Qué trabajo mecánico realiza? b) ¿Efectúa el mismo trabajo si sube por una escalera inclinada que si lo hace por una escalera vertical? Solución: a) La fuerza necesaria es igual al peso de Juan (Fig. 1): El trabajo realiza es : b) El trabajo realizado es el mismo para ambos recorridos (Fig. 2). A O P = 70 Kg · 9,8 N Kg -1 = 686 N F = 686 N Figura 1 A OB Figura 2 P r F F P W OB = 0 W OA = 0

7 4) Un cuerpo de 20 N de peso se desplaza desde el punto 0 al punto C al aplicarle una fuerza vertical F que contrarresta su peso. a) Calcula el trabajo que realiza esa fuerza en el recorrido OABC. b) Si se llega al punto C por el camino ODEFGHC, ¿qué trabajo realiza la fuerza en este caso?. c) ¿Qué potencia debería tener b un pequeño motor para llevar al cuerpo desde el punto 0 al punto H en 4s?. Solución: El módulo de la fuerza F es igual a 20N puesto que contrarresta el peso del cuerpo. El trabajo mecánico realizado por una fuerza constante de módulo F que tiene la misma dirección que el desplazamiento del cuerpo es: S (m) F P F P A B C D EF G H

8 a)En el tramo OA, el trabajo es: En el tramo AB, el trabajo es nulo porque la fuerza es perpendicular a desplazamiento. En el tramo BC, el trabajo de elevación es: El trabajo total realizado en el recorrido OABC es la suma de los trabajos parciales: Podríamos calcular directamente el trabajo total realizado considerando que el trabajo mecánico que hay que efectuar al elevar un cuerpo sólo depende de lo que cambie su altura respecto al suelo: Cuándo la fuerza es perpendicular al desplazamiento, el trabajo realizado por la fuerza es nulo.

9 b) Calculemos el trabajo realizado en cada tramo. ·Tramo OD: El desplazamiento es horizontal y el trabajo nulo porque la fuerza es perpendicular al desplazamiento: ·Tramo DE: ·Tramo EF: ·Tramo FG: ·Tramo GH: ·Tramo HC: El trabajo total realizado en el recorrido ODEFGHC es la suma de los trabajos parciales:

10 c) El trabajo realizado para desplazar el cuerpo desde el punto O al punto H es: La potencia mecánica es el cociente entre el trabajo realizado y el tiempo empleado: El valor de la potencia en CV es: S (m) F P F P A B C D EF G H

11 5)La cabina de un ascensor tiene una masa m = 400 kg y transporta 4 personas de 75 kg cada una. Si asciende con velocidad constante hasta una altura de 25 m en 40 s, calcula: a) El trabajo realizado para subir la cabina y los pasajeros. b) La potencia media desarrollada en kW y CV. c) Si el rendimiento total de la instalación del ascensor es del 62 %. ¿Cuál es el coste de cada viaje del ascensor? (El precio de 1 kW h de origen eléctrico es de 20 pesetas.) Solución: a) La masa total es m= 400 kg + 4 · 75 kg = 700 kg Como el ascensor sube con velocidad constante, la fuerza ejercida contrarresta el peso del conjunto: El trabajo realizado es: b) La potencia media en kW es la siguiente:

12 Como 1 CV equivale a 735,5 W, la potencia media en CV es: c) El trabajo total realizado por el motor del ascensor (W t ) es el necesario para subir la cabina y los viajeros (W) más el trabajo necesario para vencer los rozamientos. Por tanto, el rendimiento es: El trabajo realizado por el motor del ascensor en kW h es:

13 6) La fuerza aplicada de un cuerpo varía de acuerdo con el gráfico adjunto. C D A B F(N) s(m) a)¿Qué trabajo realiza la fuerza F en cada tramo? b) ¿cuánto vale el trabajo total?

14 Solución. a) En la gráfica fuerza-desplazamiento, el valor del trabajo viene dado por el área sombreada de la figura. · Tramo OA: Se trata de calcular el área de un triángulo de base y altura conocidas: · Tramo AB: El trabajo coincide con el área de un rectángulo de base igual a 10 m y altura igual a 20 N: · Tramo BC: Como no hay desplazamiento el trabajo es nulo: · Tramo CD: El valor del trabajo viene dado por el área del rectángulo situado bajo la recta CD: b) El trabajo total es la suma de los trabajos realizados en cada tramo:

15 7. Un camión de 30 t está parado al iniciarse una cuesta. Arranca y cuando se ha elevado una altura vertical de 50m sobre el punto de partida alcanza una velocidad de 72 km h -1, tras permanecer 3 minutos en movimiento. Calcula: a) La energía mecánica adquirida por el camión. b) La potencia mecánica del motor necesaria para suministrar esa energía. Solución: a) Si tomamos como plano de referencia para medir la altura la base del plano, el camión adquiere energía potencial gravitatoria al elevarse 50 m sobre el punto de partida, y energía cinética al adquirir una velocidad de 72 km h -1, es decir, de 20 m s -1. h = 50m v =20ms -1 50m h 0 =0 v 0 = 0

16 La energía mecánica adquirida es la suma de ambas energías: b) La potencia mecánica medida del motor necesaria para suministrar esta energía es el cociente entre la energía suministrada y el tiempo invertido: El valor de la potencia en CV es:

17 8. Para elevar un cuerpo con una velocidad constante de 1,5 m s -1 se necesita un motor de 2 CV de potencia. ¿Cuál es el peso del cuerpo? Solución: Para elevar un cuerpo es necesario ejercer una fuerza que contrarreste su peso. La potencia mecánica es: ; En consecuencia, el peso del cuerpo es igual a 9,8 · 10 2 N = 100 kp

18 9. Un proyectil de 24g de masa atraviesa una plancha metálica de 2 cm de grosor. Su velocidad a la entrada era de 400m s -1 y a la salida de 120m s -1. Calcula: a) El trabajo realizado. b) La fuerza media que ejerce la plancha sobre el proyectil. Solución: a) El trabajo realizado por la fuerza que actúa sobre el proyectil varía la energía cinética de este. Por consiguiente, el trabajo es igual a la energía cinética final menos la energía cinética inicial: W= E c b) La fuerza que ejerce la plancha metálica se obtiene a partir del trabajo realizado: La fuerza es negativa porque se opone al movimiento, es la resistencia que ejerce la lámina metálica al movimiento del proyectil.

19 10)Un embalse contiene 80 hm 3 de agua a una altura media de 60 m.Calcula la energía potencial gravitatoria que posee el agua del embalse en kW h. Solución: Como la densidad del agua es kg/m 3 y el embalse contiene 80 · 10 6 m 3 de agua, la masa de agua embalsada es: La energía potencial gravitatoria en julios es: La equivalencia entre julios y kilovatio·hora es la siguiente: Por tanto, la energía potencial gravitatoria expresada en kW h es:

20 Solución: a)Tomando como referencia de altura el nivel del río, la energía potencial gravitatoria inicial del agua es cero.Al elevar el agua aumenta la altura y,por tanto, su energía potencial gravitatoria. b) El trabajo mecánico realizado es igual al aumento experimentado por la energía potencial gravitatoria: 11) El consumo diario de agua de una ciudad es de 8·10 3 m 3, siendo necesario elevarla a unos depósitos situados a 60 m por encima del río donde tiene lugar la captación.Sin tener en cuenta otras consideraciones, calcula: a) El trabajo diario que hay que realizar. b) La potencia total de las motobombas que elevan el agua. La masa de agua consumida por día es: b) El tiempo empleado es:

21 Al considerar que 1 CV es igual a 735,5 W, la potencia en CV es: La potencia es el conciente entre el trabajo realizado y el tiempo empleado.

22 12) Al colgar un cuerpo de 10 Kg de un muelle vertical se : produce un alargamiento de 6,8 cm.Calcula a) La constante elástica del muelle. b) La energía potencial elástica almacenada. 6,8 cm

23 Solución: a)La fuerza que alarga el muelle es la fuerza del cuerpo: La constante elástica se obtiene a partir de la ley de Hooke: b) La energía potencial elástica almacena es:

24 13)Entre los días 16 y 22 de julio de 1994, el cometa Shoemaker-Levy chocó con el planeta Júpiter, entrando en su atmósfera a una velocidad de 60 km s -1.La masa de los fragmentos del cometa era comparable a la de una esfera de 27 km de diámetro y una densidad semejante a la del agua, es decir, de 1000 kg m -3.Calcula: a)La energía del impacto. b)El coste de esa energía, tomando como referencia el precio del kW h origen eléctrico que es de 20 pesetas. Solución: a) El volumen del núcleo del cometa es el de una esfera de 13,5 km de radio:

25 Masa del cometa: La energía del impacto es igual a la energía cinética del cometa: b) Al expresar la energía en kW h se obtiene: Coste: ¡Mucho dinero! Los presupuestos Generales del Estado, en España,ascienden a unas 4·10 13 pesetas.

26 Principio de conservación de la energía mecánica 14) Si desde una terraza de un tercer piso, situado 10 m por encima del suelo, lanzas verticalmente desde abajo un balón de 400 g con una velocidad de 5 m/s -1. a)¿ Cuál es su energía en el punto de lanzamiento? b) ¿ Cuánto vale su energía cinética y su energía potencial gravitatoria cuando se encuentra a una altura de 2 m sobre el suelo? c) ¿Cuál es su energía mecánica al llegar al suelo? ¿ Cuánto vale en ese instante su velocidad? Para calcular si nuestros cálculos son correctos, se mide la velocidad del balón al llegar al suelo utilizando un muelle cuya constante elástica es K= 1,35 · 10 4 N/m y se observa que, como consecuencia del impacto del balón, el muelle se comprime 8 cm. comprime 8 cm. d) ¿Cuál es el valor real de la velocidad del balón al llegar al suelo? e) ¿ Qué ha ocurrido con la energía perdida ? f) Si en lugar de lanzar el balón hacia abajo lo lanzamos hacia arriba o formando un ángulo de 60º con la horizontal, ¿ cambiaría en algo la resolución del problema?

27 ; Recuerda que la energía cinética y la energía potencial gravitatoria las calculamos así: Solución Se trata de un problema que podemos resolver aplicando el principio de conservación de la energía mecánica. Si suponemos que no hay rozamientos, la energía mecánica total permanece constante, se conserva. Si suponemos que no hay rozamiento, que no se produce fricción con el aire, el balón conserva su energía mecánica a lo largo de la trayectoria. a)En el punto de lanzamiento, disponemos de los siguientes datos, en unidades del SI: m = 400 g = 0,4 Kg ; g = 9,8 m/s -2 ; h 1 = 10 m ; v 1 = 5 m/s -1 En el momento del lanzamiento, el balón posee energía cinética puesto que se mueve con una velocidad de 5m/s -1 y posee energía potencial gravitatoria al estar situado a una altura de 10 m sobre el suelo.

28 b)Dado que la energía mecánica se conserva, la energía mecánica en cualquier punto será siempre 44,2J. La energía potencial gravitatoria a una altura de 2 m sobre el suelo es: ; En consecuencia la energía cinética del balón es ahora:

29 c)Puesto que la energía mecánica permanece constante, su valor al llgar al suelo es 44,2J. Pero ahora, la altura es cero y, por lo tanto, la energía potencial es nula: ; ;

30 15.- El campeón olímpico de halterofilia en la máxima categoría, el ruso Andrey Chemerkin, levantó en la modalidad de dos tiempos 260 kg, elevándolos hasta 2,30 m sobre el suelo. a.- ¿Qué potencia desarrolló el atleta si invirtió en el levantamiento un tiempo de 5 s? b.- Al dejar caer las pesas, ¿qué energía cinética tenían al llegar al suelo? Solución: a) Como la energía potencial gravitatoria de las pesas en el suelo es cero, el trabajo mecánico realizado por el atleta es igual a la energía potencial gravitatoria de las pesas e el punto más alto: Como el levantador realiza este trabajo en 5 s, la potencia media desarrollada es: b) Y, de acuerdo con el principio de conservación...

31 16) ¿Qué Altura máxima puede alcanzar una pelota de masa m lanzada verticalmente hacia arriba desde el suelo con una velocidad de 12 m/s -1 ? Solución En el suelo, la energía potencial gravitatoria de la pelota es cero. A medida que la pelota asciende aumenta su altura sobre el suelo, y por tanto, aumenta su energía potencial gravitatoria, pero disminuye en igual cuantía su energía cinética porque disminuye su velocidad. Cuando alcanza la altura máxima, la velocidad es nula y toda su energía cinética se ha transformado en energía potencial gravitatoria. La altura alcanzada es independiente de la masa del cuerpo.

32 17.- Un automóvil, cuya masa total es de 1,25 t, se desplaza con una velocidad de 108 km/h. Si como consecuencia de un choque cediera toda su energía a un peatón de 75 kg, ¿hasta qué altura podría elevarse? Solución: La velocidad del automóvil en unidades del SI es: La energía cinética del automóvil es: Si toda esta energía se transfiere al peatón y se convierte en energía potencial gravitatoria, la altura alcanzada se obtiene al igualar ambas energías: No, no hay ningún error. Es necesario conducir con prudencia.

33 18) Desde una altura de 20m se lanza horizontalmente una pelota de 80 g de masa con una velocidad de 5 m s -1 ¿Qué velocidad tendrá cuando se encuentre a 4 m sobre el suelo? Solución: Este problema puede resolverse aplicando el principio de conservación de la energía mecánica. En efecto, cuando la pelota desciende disminuye su altura sobre el suelo y, por tanto, disminuye su energía potencial gravitatoria; pero aumenta su velocidad y, en consecuencia, aumenta su energía cinética. h i = 20 m v i = 5 m s -1 h f = 4 m vfvf El aumento de la energía cinética de la pelota es igual a la disminución de su energía potencial gravitatoria. La energía mecánica total permanece constante: La energía inicial es:

34 La energía potencial gravitatoria inicial es: La energía potencial gravitatoria final de la pelota es la siguiente La energía cinética final de la pelota es: De acuerdo con el principio de conservación de la energía mecánica, la energía mecánica inicial es igual a la energía mecánica final:

35 19) Un resorte de 62 cm de longitud, cuya constante elástica es k= 1,5·10 4 N/m, está situado verticalmente. Se comprime hasta que su longitud es de 38 cm. Calcula: a)La energía potencial elástica que almacena el resorte comprimido. b) Si se coloca sobre el muelle comprimido un cuerpo de m=10Kg y se suelta el muelle, ¿qué altura sobre el suelo alcanza el cuerpo en el punto mas alto? a)Al comprimir el resorte se acorta una distancia x = 0,62m – 0,38m = 0,28m La energía potencial elástica almacenada es: h 0 =0,62m h 1 =0,38m h

36 b)La energía mecánica inicial es la suma de la energía potencial elástica Toda esta energía se convierte en energía potencial gravitatoria del cuerpo cuando adquiere la altura h:

37 20.- En el punto más elevado de un plano inclinado de 3 m de altura y 20 m de longitud (Fig. A) se sitúa un cuerpo de 10 kg que se desliza a lo largo del plano. Calcula: a) La velocidad del cuerpo al pie del plano. b) Si se mide esta velocidad siempre es menor que la teóricamente prevista, siendo en este caso de 5,2 m s -1. ¿Cuánto vale el trabajo de rozamiento? ¿Qué valor tiene la fuerza de rozamiento? Solución:Solución: a)De acuerdo con el principio de conservación de la energía mecánica, Si no existe rozamiento entre el cuerpo y la superficie del plano, la energía potencial gravitatoria del cuerpo en el punto más alto del plano es igual a su energía cinética en el punto más bajo, porque inicialmente el cuerpo está en reposo y al final su energía potencial gravitatoria es cero:

38 b) La velocidad real es menor, en este caso 5, 2 m s -1, porque la fuerza de rozamiento, que siempre se opone al movimiento, realiza un trabajo negativo. Al considerar el trabajo de rozamiento, se cumple: La energía potencial gravitatoria es: La energía cinética en el punto más bajo es: Por tanto, el trabajo de rozamiento es: Este trabajo se convierte en calor que se dispersa en el aire. La fuerza de rozamiento se calcula teniendo en cuenta que el trabajo de rozamiento es igual a la fuerza de rozamiento por el desplazamiento:

39 21) Un cuerpo de masa m = 8 kg inicia el deslizamiento por un plano desde un punto situado a 5 m de altura sobre el suelo. Su energía cinética cuando llega al suelo es de 320 J. a) ¿Se ha conservado su energía mecánica? b) ¿Cuánto vale el trabajo de rozamiento? Solución: a) Cuando se inicia el deslizamiento, la energía cinética del cuerpo es cero al ser nula la velocidad. Por consiguiente, en el instante inicial, la energía mecánica total es: E m 1 = 392 J 5 m W r = -72 J E m2 = 320 J

40 Al llegar al suelo, la energía potencial es cero al ser la altura igual a cero. Por tanto, se cumple: En consecuencia, si la energía mecánica inicial es de 392 J y la final es de 320 J, se han transformado en calor: 392 J – 320 J = 72 J. Debido a la existencia de rozamientos, la energía mecánica no se conserva. b) El trabajo de rozamiento, que es un trabajo negativo, será:

41 22) Un cuerpo de 20 Kg resbala a lo largo de un plano inclinado 30º sobre la horizontal. La longitud del plano es de 10 m y el coeficiente de rozamiento 0,3. Calcula: a) El trabajo de rozamiento. b) la energía potencial gravitatoria del cuerpo cuando está situado en lo alto del plano. c) La energía cinética y la velocidad del cuerpo al final del plano. Solución: a) La fuerza de rozamiento se opone al movimiento de cuerpo, por lo que el trabajo de rozamiento es negativo: N FrFr ptpt pnpn P o

42 b) Para calcular la energía potencial gravitatoria es necesario conocer la altura del plano: c) De acuerdo con el principio de conservación de la energía, teniendo en cuenta el trabajo de rozamiento, se cumple: La velocidad del cuerpo al final del plano se obtiene a partir de su energía cinética:

43 23) Un coche de 1,12t se mueve con una aceleración constante de 1,5 /s 2 sobre una superficie horizontal en la que la fuerza de rozamiento tiene un valor constante de 220 N.¿Qué trabajo realiza el motor del coche al recorrer 400m? Solución: La fuerza total ejercida por el motor es la suma de la fuerza necesaria para producir una aceleración de 1,5 m/s 2 más la dedicada a contrarrestar la fuerza de rozamiento: El trabajo se obtiene multiplicando la fuerza por el desplazamiento:

44 24) Se lanza un cuerpo a lo largo de un plano horizontal con una velocidad inicial de 4m/s. El coeficiente de rozamiento entre el cuerpo y el plano es. ¿Qué distancia recorre hasta pararse? Solución: Como el cuerpo se desplaza sobre una superficie horizontal, su energía potencial gravitatoria permanece constante, no varía. Toda la energía cinética del cuerpo se disipa en forma de trabajo de rozamiento:

45 25) Un resorte de constante elástica está unido a un cuerpo de masa, como indica la figura. Se comprime una longitud de 15cm y cuando el objeto vuelve a pasar por su posición inicial tiene una velocidad de 3,4m/s. ¿Cuánta energía se ha perdido en forma de calor por rozamiento? Solución: Como el desplazamiento se produce sobre una superficie horizontal, la energía potencial gravitatoria no varía. Al comprimir el resorte adquiere energía potencial elástica: Al pasar el objeto por la posición inicial posee energía cinética: La energía perdida es la diferencia entre ambas energías:


Descargar ppt "Solución Cuando la fuerza que actúa sobre un cuerpo tiene la misma dirección y sentido que el desplazamiento (fig A), el trabajo se define como el producto."

Presentaciones similares


Anuncios Google