La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

INTEGRANTES  El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia.

Presentaciones similares


Presentación del tema: "INTEGRANTES  El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia."— Transcripción de la presentación:

1

2 INTEGRANTES

3  El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico.

4 ACIDO NUCLEICO Los Ácidos Nucleicos son las biomoléculas portadoras de la información genética. Son biopolímeros, de elevado peso molecular, formados por otras subunidades estructurales o monómeros, denominados Nucleótidos. Desde el punto de vista químico, los ácidos nucleicos son macromoléculas formadas por polímeros lineales de nucleótidos, unidos por enlaces éster de fosfato, sin periodicidad aparente. De acuerdo a la composición química, los ácidos nucleicos se clasifican: se encuentran residiendo en el núcleo celular y algunos organelos, que actúan en el citoplasma.

5 La unión de la base nitrogenada a la pentosa recibe el nombre de nucleótsido. La unión de nucleósido con el acido fosfórico recibe el nombre de nucleótido NUCLEOSIDOS Un nucleósido es una molécula monomérica orgánica que integra las macromoléculas de ácidos nucleicos que resultan de la unión covalente entre una base nitrogenada con una pentosa que puede ser ribosa o desoxirribosa. Ejemplos de nucleósidos son la citidina, uridina, adenosina, guanosina, timidina y la inosina.

6 NUCLEOTIDOS

7 Un nucleótido está formado por tres componentes. Una pentosa, un compuesto heterocíclico nitrogenado (base nitrogenada) que junto con la pentosa forma un nucleósido, y una molécula de ácido fosfórico. Los nucleótidos tienen papeles muy variados dentro del metabolismo celular. Son la moneda energética en el metabolismo (ej: ATP), son mensajeros químicos secundarios en la respuesta celular a los estímulos inducidos por hormonas o agentes externos (ej.: AMPc), constituyen una serie de importantes cofactores enzimáticos y, por supuesto, son los constituyentes de los ácidos nucleicos: ribonucleicos (ARN) y desoxiribonucleicos (ADN). Ribosa Desoxirribosa UNA PENTOSA Púricas (Adenina y Guanina). Pirimidínicas (Timina, Citosina, Uracilo). UNA BASE NITROGENADA GRUPO FOSFATO Un nucleótido está formado por la unión de:

8 Un azúcar de cinco carbonos, la pentosa desoxirribosa, se une a cada base del ADN. La pentosa que forma parte del ADN es la 2- desoxi-D-ribosa. La pentosa que forma parte del ARN es la D-ribosa.

9 Los grupos fosfato se alternan con las pentosas para formar el “esqueleto” de la cadena de ADN; las bases se proyectan hacia el interior del esqueleto de la cadena.

10 Las Bases Nitrogenadas son las que contienen la información genética. En el caso del ADN las bases son dos Purinas y dos Pirimidinas. Las purinas son A (Adenina) y G (Guanina). Las pirimidinas son T (Timina) y C (Citosina). En el caso del ARN también son cuatro bases, dos purinas y dos pirimidinas. Las purinas son A y G y las pirimidinas son C y U (Uracilo). Los ácidos nucleicos, ADN y ARN, que se diferencian por: el azúcar (Pentosa) que llevan: desoxirribosa y ribosa, respectivamente. Además se diferencian por las bases nitrogenadas que contienen, Adenina, Guanina, Citosina y Timina, en el ADN; y Adenina, Guanina, Citosina y Uracilo en el ARN. Una última diferencia está en la estructura de las cadenas, en el ADN será una cadena doble y en el ARN es una cadena sencilla

11 PROPIEDADES DE LAS BASES NITROGENADAS Son bases débiles Son poco o nada solubles en agua Son moléculas planas Absorben la luz UV a 250-280 nm, lo que permite su identificación y conocer su concentración

12 Son fundamentales para la vida en las células, tienen 3 funciones cruciales: Transportan energía. Transportan átomos. Transmiten los caracteres hereditarios. También: Síntesis de proteínas específicas de la célula. Almacenamiento o depósito, replicación y transmisión de la información genética.

13 ADN Acido desoxirribonucleicos: Almacena y transmite la información genética. Dirige el proceso de síntesis de proteínas. Constituye el material genético y forma los genes, que son las unidades funcionales de los cromosomas. Acido desoxirribonucleicos: Almacena y transmite la información genética. Dirige el proceso de síntesis de proteínas. Constituye el material genético y forma los genes, que son las unidades funcionales de los cromosomas. Acido Ribonucleico: actúan como transmisores de dicha información (ARN mensajero), como componentes de los ribosomas (ARN ribosómico) o como transferidores de aminoácidos (ARN de transferencia

14 material genético de todos los organismos celulares y casi todos los virus. Es el tipo de molécula más compleja que se conoce. Su secuencia de nucleótidos contiene la información necesaria para poder controlar el metabolismo un ser vivo. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.

15 ESTRUCTURA DEL ADN Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos.adn-1.gif Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen unaenlaces_hidrogeno2.jpg asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.

16 Almacenamiento de la información La codificación de proteínas (transcripción y traducion) La autoduplicacion (replicación del ADN ) para asegurar la trasmision de la informacion de las células hijas durante la divison celular.

17

18 Una de las actividades más importantes de la célula es la síntesis de proteínas, moléculas que intervienen en la mayoría de las funciones celulares. El material hereditario conocido como ácido desoxirribonucleico (ADN), que se encuentra en el núcleo de la célula, contiene la información necesaria para dirigir la fabricación de proteínas. El término proteína se deriva de la palabra proteicos, que significa de primer orden, ya que son esenciales en la formación de estructuras celulares así como en el control de las funciones que esta realiza. Estas moléculas figuran entre los componentes más abundantes en la mayoría de los seres vivos; en los animales representan un 50% o un poco más de su peso seco, mientras que en los vegetales constituyen un poco menos de la mitad de su peso seco.

19 Los seres vivos utilizan a las proteínas como materia prima para su desarrollo y control de los procesos químicos propios del metabolismo. La ingestión adecuada de proteínas favorece, entre otras cosas, la formación de musculatura, dientes, pelo, uñas, sangre, la oxigenación de las células, transporte de desechos del metabolismo, etc. Las proteínas son las biomoléculas con mayor número de funciones en el organismo, entre ellas tenemos las siguientes: Código genético Los genes, localizados en le núcleo celular, son fragmentos de ácido desoxirribonucleico. La molécula de ADN esta constituida por dos cadenas formadas por un alto número de unidades químicas denominadas nucleótidos, estas cadenas se mantienen unidas gracias a enlaces que se establecen entre las bases nitrogenadas que forman parte de la estructura de los nucleótidos. Hay 4 bases: timina, adenina, citosina y guanina. Un gen esta formado por una secuencia especifica de nucleótidos que determinan el tipo de proteína a que da lugar. Pero los genes no producen proteínas directamente, sino que dirigen la formación de una molécula intermedia, de estructura complementaria denominada ácido ribonucleico mensajero, que contiene las instrucciones necesarias para construir una proteína.

20 Las cadenas de ADN se separan. La formación de ARNm comienza en el núcleo con la separación de 2 cadenas que forman la molécula de ADN. Cada secuencia de 3 bases en la cadena de ADN, codifica para uno de los 20 aminoácidos constituyentes de las proteínas.

21 La transcripción del ADN es el primer proceso de la expresión génica, mediante el cual se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteína utilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.

22

23 El proceso de replicación de ADN es el mecanismo que permite al ADN duplicarse (es decir, sintetizar una copia idéntica). De esta manera de una molécula de ADN única, se obtienen dos o más "réplicas" de la primera. Esta duplicación del material genético se produce de acuerdo con un mecanismo semiconservador, lo que indica que las dos cadenas complementarias del ADN original, al separarse, sirven de molde cada una para la síntesis de una nueva cadena complementaria de la cadena molde, de forma que cada nueva doble hélice contiene una de las cadenas del ADN original.

24 El Ácido Ribonucleico se forma por la polimerización de ribonucleótidos, los cuales se unen entre ellos mediante enlaces fosfodiéster en sentido 5´-3´ (igual que en el ADN). Estos a su vez se forman por la unión de un grupo fosfato, una ribosa (una aldopentosa cíclica) y una base nitrogenada unida al carbono 1’ de la ribosa, que puede ser citosina, guanina, adenina y uracilo. Se conocen tres tipos principales de ARN y todos ellos participan de una u otra manera en la síntesis de las proteínas. Ellos son: El ARN mensajero (ARNm), el ARN ribosomal (ARNr) y el ARN de transferencia (ARNt). ARN mensajero (ARNm) Consiste en una molécula lineal de nucleótidos (monocatenaria), cuya

25 Consiste en una molécula lineal de nucleótidos (monocatenaria), cuya secuencia de bases es complementaria a una porción de la secuencia de bases del ADN. El ARNm dicta con exactitud la secuencia de aminoácidos en una cadena polipeptídica en particular. Las instrucciones residen en tripletes de bases a las que llamamos Codones. Copia la informacion del ADN (en un proceso llamado transcripcion) y la transporta hasta los ribosomas donde se produce la biosintesis de las proteinas (en un proceso llamado traduccion). Entre el ADN y el ARN, existen tres diferencias claras: el azúcar integrante del ARN es la ribosa el ARN contiene uracilo en lugar de timina el ARN está formado por una única cadena Además, existen tres tipos diferentes de ARN, cada uno de los cuales desempeña una función diferente, el mensajero (ARNm), el transferente (ARNr) y el ribosómico (ARNr).

26 Este tipo de ARN una vez trascrito, pasa al nucleolo donde se une a proteínas. De esta manera se forman las subunidades de los ribosomas. Este es el más pequeño de todos, tiene aproximadamente 75 nucleótidos en su cadena, además se pliega adquiriendo lo que se conoce con forma de hoja de trébol plegada. El ARNt se encarga de transportar los aminoácidos libres del citoplasma al lugar de síntesis proteica. En su estructura presenta un triplete de bases complementario de un codón determinado, lo que permitirá al ARNt reconocerlo con exactitud y dejar el aminoácido en el sitio correcto. A este triplete lo llamamos Anticodón.

27

28

29

30 http://www.uv.es/tunon/pdf_doc/AcidosNucleicos_veronica.pdf http://www.uhu.es/08007/documentos%20de%20texto/apuntes/2006- 07/tema_09_acidos_nucleicos.pdf http://www.uhu.es/08007/documentos%20de%20texto/apuntes/2006- 07/tema_09_acidos_nucleicos.pdf

31


Descargar ppt "INTEGRANTES  El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en el año 1869 aisló de los núcleos de las células una sustancia."

Presentaciones similares


Anuncios Google