La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

CONTROL ESTADÍSTICO DE CALIDAD Métodos y filosofía del Control Estadístico del Proceso GRÁFICAS DE CONTROL.

Presentaciones similares


Presentación del tema: "CONTROL ESTADÍSTICO DE CALIDAD Métodos y filosofía del Control Estadístico del Proceso GRÁFICAS DE CONTROL."— Transcripción de la presentación:

1 CONTROL ESTADÍSTICO DE CALIDAD Métodos y filosofía del Control Estadístico del Proceso GRÁFICAS DE CONTROL

2 INTRODUCCIÓN OBJETIVOS Presentar las herramientas básicas del Control Estadístico del Proceso (CEP) Describir las bases estadísticas de las gráficas de control de Shewhart Discutir e ilustrar algunos aspectos prácticos en la implantación del CEP

3 INTRODUCCIÓN Las 7 Herramientas Básicas: Estratificación Hojas de datos Diagrama de Pareto Diagrama causa-efecto Diagrama de dispersión Histograma Gráficas de control

4 INTRODUCCIÓN Objetivo principal del CEP El CEP es una metodología utilizada para lograr la estabilidad y mejorar la capacidad del proceso mediante la aplicación sistemática de herramientas de solución de problemas para reducir su variación.

5 Causas de variación aleatorias y asignables LIELSE t1t1 t2t2 t3t3 Característica de calidad del proceso Tiempo

6 Definición del estado de control Un proceso se dice que se encuentra bajo control estadístico si sólo se ve afectado por un conjunto de causas aleatorias de variación Si el proceso se encuentra afectado por causas asignables de variación, se dice que está fuera de control

7 Fundamentos estadísticos de las Gráficas de Control

8 Gráfica de control LIC LSC LC Número de subgrupo o muestra Característica de calidad Límite Superior de Control Límite Inferior de Control Línea Central Elementos y principios básicos de una Gráfica de Control

9 Gráficas de control y pruebas de hipótesis Suponga que en la gráfica de control el eje vertical representa el estadístico muestral Si el valor de cae dentro de los límites de control, concluimos que la media del proceso está bajo control. Por otra parte, si excede cualquiera de los límites de control, concluimos que la media del proceso está fuera de control. La prueba de hipótesis quedaría de la siguiente manera:

10 Error tipo I y error tipo II en una gráfica de control Riesgo del proveedor Riesgo del cliente Potencia de la prueba

11 Modelo general para una gráfica de control LSC = w + L w LC = w LIC = w - L w Sea w un estadístico muestral que mide cierta característica de calidad y sean w y w la media y la desviación estándar de w, respectivamente. Entonces, LC, LSC y LIC son:

12 Aplicación de las Gráficas de Control El uso más importante es mejorar el desempeño del proceso Proceso Sistema de medición SalidaEntrada Detección de causa asignable Identificación de la causa raíz del problema Implementación de acción correctiva Verificación y seguimiento

13 Aplicación de las Gráficas de Control Instrumento de estimación de ciertos parámetros del proceso como la media, la desviación estándar, fracción de defectuosos, etc. Realización de estudios de capacidad del proceso

14 Diseño de la Gráfica de Control En la mayoría de los problemas de control es común apoyarse principalmente en consideraciones estadísticas para diseñar las gráficas de control, asumiendo los factores de costo implícitamente. Recientemente se ha iniciado a examinar el diseño de las gráficas de control desde un enfoque económico, considerando el costo de muestreo, de producir artículos defectuosos, de investigar falsas alarmas, etc.

15 ¿Por qué utilizar Gráficas de Control? Son una técnica comprobada para mejorar la productividad Son efectivas para la prevención de defectos Previenen ajustes innecesarios del proceso Proporcionan información de diagnóstico Proporcionan información sobre la capacidad del proceso

16 Selección de los límites de control

17 Límites de control y errores tipo I y tipo II Al separar los límites de control de la línea central se reduce el riesgo del error tipo I y se incrementa el riesgo del error tipo II LIC 2 LSC 2 LC LIC 1 LSC 1 LIC 2 LSC 2 LC LIC 1 LSC 1

18 Límites de control y errores tipo I y tipo II Al acercar los límites de control a la línea central se incrementa el riesgo del error tipo I y se reduce el riesgo del error tipo II LIC LSC LC

19 Límites de advertencia en las Gráficas de Control Se recomienda manejar dos conjuntos de límites de control: Límites de control deacción (a 3 sigma) Límites de advertencia (a 2 sigma) LIC LSC LC LIA LSA

20 Tamaño de la muestra y frecuencia de muestreo

21 Al diseñar una gráfica de control se debe especificar tanto el tamaño de la muestra como la frecuencia de muestreo. n= tamaño de la muestra h= intervalo de tiempo entre muestras

22 Tamaño de la muestra La capacidad de la gráfica de control para detectar cierto tipo de cambios en el proceso depende del tamaño de la muestra. Si deseamos detectar cambios pequeños se deben utilizar muestras grandes. Si deseamos detectar cambios grandes es mejor utilizar muestras pequeñas.

23 Curva característica de operación Para construir la Curva característica de operación se calcula la probabilidad de que el estadístico muestral caiga entre los límites de control. LIC LSC LC Probabilidad de que el estadístico muestral caiga entre LIC y LSC

24 Curva característica de operación

25 Frecuencia de muestreo La situación más deseable para detectar los cambios es tomar muestras grandes de manera frecuente. Se presenta el problema económico. Opciones: Muestras pequeñas en intervalos cortos de tiempo Muestras grandes en intervalos largos de tiempo.

26 LIC LSC LC Longitud de la corrida promedio (ARL) Otra forma de enfrentar el problema de decidir sobre el tamaño de muestra y la frecuencia de muestreo es mediante La Longitud de la Corrida Promedio (ARL) de la GC. La ARL es el número promedio de puntos que deben graficarse antes de que un punto indique una condición fuera de control. 1ii+1ARL... ARL 2...

27 Longitud de la corrida promedio La ARL se calcula mediante: donde p es la probabilidad de que cualquier punto exceda los límites de control. La longitud de la corrida promedio cuando el proceso está bajo control se llama ARL 0 y se calcula mediante: La longitud de la corrida promedio cuando el proceso está fuera de control se llama ARL 1 y se calcula mediante:

28 Tiempo promedio entre señales El Tiempo Promedio de Señal (ATS) es el tiempo que debe transcurrir en promedio entre una señal de fuera de contro y otra. Si se toma una muestra cada h unidades de tiempo, entonces el ATS se calcula mediante: ATS = ARL h

29 Subgrupos racionales

30 Una idea fundamental al momento de utilizar GC es la recolección de los datos muestrales de acuerdo a lo que Shewhart llamó el concepto de Subgrpos Racionales. Cuando se aplican las GC a procesos productivos, frecuentemente se utiliza el orden del tiempo de producción, ya que permite detectar causas asignables que ocurren sobre el tiempo.

31 Enfoques para construir Subgrupos racionales 1-Cada muestra consiste de unidades que se produjeron al mismo tiempo (o tan próximas como sea posible). Idealmente se toman unidades consecutivas de la producción. Se utiliza para detectar cambios en el proceso.

32 Enfoques para construir Subgrupos racionales 2-Cada muestra consiste de unidades de producto que son represetativas de todas las unidades que se produjeron desde que se tomó la última muestra. Con frecuencia se utiliza para la toma de decisiones sobre la aceptación de todas las unidades de producto que se han producido desde la última muestra.

33 Análisis de patrones en las Gráficas de Control

34 Puntos fuera de los límites de control Corridas Ciclos LIC LSC LC

35 LIC LSC LC Reglas de sensibilización para las Gráficas de Control 1.Uno o más puntos fuera de los límites de control 2.Dos de tres puntos consecutivos fuera de los límites de advertencia 2-sigma pero dentro de los límites de control 3.Cuatro de cinco puntos consecutivos más allá de los límites 1-sigma 4.Una corrida de ocho puntos consecutivos sobre un lado de la línea central 5.Seis puntos en una corrida estable creciente o decreciente 6.Quince puntos en una corrida en la zona C (por arriba y por abajo de la línea central) 7.Catorce puntos en una corrida que se alterna arriba y abajo 8.Ocho puntos en una corrida en ambos lados de la línea central sin niguno en la zona C 9.Un patron inusual o no aleatorio en los datos 10.Uno o más puntos cerca de un límite de control o de advertencia

36 Implementación del Control Estadístico del Proceso Elementos de un programa de CEP exitoso Liderazgo administrativo Un enfoque de equipo Educación de los empleados a todos los niveles Enfasis en la mejora continua Un mecanismo para reconocer el éxito y comunicarlo a toda la organización


Descargar ppt "CONTROL ESTADÍSTICO DE CALIDAD Métodos y filosofía del Control Estadístico del Proceso GRÁFICAS DE CONTROL."

Presentaciones similares


Anuncios Google